- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Norway, United Kingdom, United Kingdom, France, United KingdomPublisher:Wiley Keogan, Katharine; Daunt, Francis; Wanless, Sarah; Phillips, Richard A.; Alvarez, David; Anker-Nilssen, Tycho; Barrett, Robert T.; Bech, Claus; Becker, Peter H.; Berglund, Per-Arvid; Bouwhuis, Sandra; Burr, Zofia M.; Chastel, Olivier; Christensen-Dalsgaard, Signe; Descamps, Sébastien; Diamond, Tony; Elliott, Kyle; Erikstad, Kjell Einar; Harris, Mike; Hentati-Sundberg, Jonas; Heubeck, Martin; Kress, Stephen W.; Langset, Magdalene; Lorensten, Svein-Håkon; Major, Heather L.; Whalley, Heather; Mallory, Mark; Mellor, Mick; Miles, Will T. S.; Moe, Børge; Mostello, Carolyn; Newell, Mark; Nisbet, Ian; Reiertsen, Tone Kirstin; Rock, Jennifer; Shannon, Paula; Varpe, Øystein; Lewis, Sue; Phillimore, Albert B.;AbstractTiming of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations.We combined 51 long‐term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small‐scale region, large‐scale region and the whole North Atlantic.In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small‐scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales.In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter‐year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black‐legged kittiwakeRissa tridactylawas the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver.Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.
Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Hungary, Poland, United Kingdom, Lithuania, Netherlands, Lithuania, Netherlands, Spain, Sweden, Belgium, France, United Kingdom, United Kingdom, France, France, FinlandPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., RCN | Centre for Biodiversity D...ARC| Discovery Early Career Researcher Award - Grant ID: DE180100202 ,RCN| Centre for Biodiversity Dynamics (CBD)Vriend, SJG; Grøtan, V; Gamelon, M; Adriaensen, F; Ahola, MP; Álvarez, E; Bailey, LD; Barba, E; Bouvier, J-C; Burgess, MD; Bushuev, A; Camacho, C; Canal, D; Charmantier, A; Cole, EF; Cusimano, C; Doligez, BF; Drobniak, SM; Dubiec, A; Eens, M; Eeva, T; Erikstad, KE; Ferns, PN; Goodenough, AE; Hartley, IR; Hinsley, SA; Ivankina, E; Juškaitis, R; Kempenaers, B; Kerimov, AB; Kålås, JA; Lavigne, C; Leivits, A; Mainwaring, MC; Martínez-Padilla, J; Matthysen, E; van Oers, K; Orell, M; Pinxten, R; Reiertsen, TK; Rytkönen, S; Senar, JC; Sheldon, BC; Sorace, A; Török, J; Vatka, E; Visser, ME; Saether, B-E;AbstractIdentifying the environmental drivers of variation in fitness‐related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness‐related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long‐term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February–May) on spatial synchrony in three fitness‐related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness‐related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness‐related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.
NERC Open Research A... arrow_drop_down Université Paris 1 Panthéon-Sorbonne: HALArticle . 2023Full-Text: https://cnrs.hal.science/hal-03841429Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2023License: CC BYData sources: Oxford University Research ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2023Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaELTE Digital Institutional Repository (EDIT)Article . 2023Data sources: ELTE Digital Institutional Repository (EDIT)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BYData sources: Fachrepositorium LebenswissenschaftenInstitutional Repository of Nature Research CentreArticle . 2023License: CC BYData sources: Institutional Repository of Nature Research CentrePublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 107 Powered bymore_vert NERC Open Research A... arrow_drop_down Université Paris 1 Panthéon-Sorbonne: HALArticle . 2023Full-Text: https://cnrs.hal.science/hal-03841429Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2023License: CC BYData sources: Oxford University Research ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2023Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaELTE Digital Institutional Repository (EDIT)Article . 2023Data sources: ELTE Digital Institutional Repository (EDIT)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BYData sources: Fachrepositorium LebenswissenschaftenInstitutional Repository of Nature Research CentreArticle . 2023License: CC BYData sources: Institutional Repository of Nature Research CentrePublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Norway, United Kingdom, United Kingdom, France, United KingdomPublisher:Wiley Keogan, Katharine; Daunt, Francis; Wanless, Sarah; Phillips, Richard A.; Alvarez, David; Anker-Nilssen, Tycho; Barrett, Robert T.; Bech, Claus; Becker, Peter H.; Berglund, Per-Arvid; Bouwhuis, Sandra; Burr, Zofia M.; Chastel, Olivier; Christensen-Dalsgaard, Signe; Descamps, Sébastien; Diamond, Tony; Elliott, Kyle; Erikstad, Kjell Einar; Harris, Mike; Hentati-Sundberg, Jonas; Heubeck, Martin; Kress, Stephen W.; Langset, Magdalene; Lorensten, Svein-Håkon; Major, Heather L.; Whalley, Heather; Mallory, Mark; Mellor, Mick; Miles, Will T. S.; Moe, Børge; Mostello, Carolyn; Newell, Mark; Nisbet, Ian; Reiertsen, Tone Kirstin; Rock, Jennifer; Shannon, Paula; Varpe, Øystein; Lewis, Sue; Phillimore, Albert B.;AbstractTiming of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations.We combined 51 long‐term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small‐scale region, large‐scale region and the whole North Atlantic.In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small‐scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales.In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter‐year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black‐legged kittiwakeRissa tridactylawas the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver.Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.
Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Edinburgh Research E... arrow_drop_down St Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryJournal of Animal EcologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Hungary, Poland, United Kingdom, Lithuania, Netherlands, Lithuania, Netherlands, Spain, Sweden, Belgium, France, United Kingdom, United Kingdom, France, France, FinlandPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., RCN | Centre for Biodiversity D...ARC| Discovery Early Career Researcher Award - Grant ID: DE180100202 ,RCN| Centre for Biodiversity Dynamics (CBD)Vriend, SJG; Grøtan, V; Gamelon, M; Adriaensen, F; Ahola, MP; Álvarez, E; Bailey, LD; Barba, E; Bouvier, J-C; Burgess, MD; Bushuev, A; Camacho, C; Canal, D; Charmantier, A; Cole, EF; Cusimano, C; Doligez, BF; Drobniak, SM; Dubiec, A; Eens, M; Eeva, T; Erikstad, KE; Ferns, PN; Goodenough, AE; Hartley, IR; Hinsley, SA; Ivankina, E; Juškaitis, R; Kempenaers, B; Kerimov, AB; Kålås, JA; Lavigne, C; Leivits, A; Mainwaring, MC; Martínez-Padilla, J; Matthysen, E; van Oers, K; Orell, M; Pinxten, R; Reiertsen, TK; Rytkönen, S; Senar, JC; Sheldon, BC; Sorace, A; Török, J; Vatka, E; Visser, ME; Saether, B-E;AbstractIdentifying the environmental drivers of variation in fitness‐related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness‐related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long‐term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February–May) on spatial synchrony in three fitness‐related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness‐related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness‐related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.
NERC Open Research A... arrow_drop_down Université Paris 1 Panthéon-Sorbonne: HALArticle . 2023Full-Text: https://cnrs.hal.science/hal-03841429Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2023License: CC BYData sources: Oxford University Research ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2023Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaELTE Digital Institutional Repository (EDIT)Article . 2023Data sources: ELTE Digital Institutional Repository (EDIT)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BYData sources: Fachrepositorium LebenswissenschaftenInstitutional Repository of Nature Research CentreArticle . 2023License: CC BYData sources: Institutional Repository of Nature Research CentrePublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 107 Powered bymore_vert NERC Open Research A... arrow_drop_down Université Paris 1 Panthéon-Sorbonne: HALArticle . 2023Full-Text: https://cnrs.hal.science/hal-03841429Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2023License: CC BYData sources: Oxford University Research ArchiveHELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2023Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaELTE Digital Institutional Repository (EDIT)Article . 2023Data sources: ELTE Digital Institutional Repository (EDIT)Fachrepositorium LebenswissenschaftenArticle . 2022License: CC BYData sources: Fachrepositorium LebenswissenschaftenInstitutional Repository of Nature Research CentreArticle . 2023License: CC BYData sources: Institutional Repository of Nature Research CentrePublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.3908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu