- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2024 Netherlands, France, ItalyPublisher:American Chemical Society (ACS) Funded by:DFG, UKRI | Mid-IR vibration-assisted..., UKRI | Self-assembled Plasmonic ... +11 projectsDFG ,UKRI| Mid-IR vibration-assisted luminescence & spectroscopies (MIRVALS) ,UKRI| Self-assembled Plasmonic nanoOptics for sustainable Chemistry ,NSF| The Role of Plasmon Initiated Electron Transfer in Enhanced Raman Spectroscopy ,EC| PICOFORCE ,ANR| ZORG ,UKRI| Novel Enhanced Sampling Methods in Multiscale Modeling ,UKRI| EPSRC Centre for Doctoral Training in Topological Design ,NSF| Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations ,MIUR ,UKRI| Ubiquitous Optical Healthcare Technologies (ubOHT) Programme Grant ,NSF| University of Minnesota Materials Research Science and Engineering Center ,EC| OPINCHARGE ,UKRI| Chip-scale Atomic Systems for a Quantum NavigatorAndrei Stefancu; Javier Aizpurua; Ivano Alessandri; Ilko Bald; Jeremy J. Baumberg; Lucas V. Besteiro; Phillip Christopher; Miguel Correa-Duarte; Bart de Nijs; Angela Demetriadou; Renee R. Frontiera; Tomohiro Fukushima; Naomi J. Halas; Prashant K. Jain; Zee Hwan Kim; Dmitry Kurouski; Holger Lange; Jian-Feng Li; Luis M. Liz-Marzán; Ivan T. Lucas; Alfred J. Meixner; Kei Murakoshi; Peter Nordlander; William J. Peveler; Raul Quesada-Cabrera; Emilie Ringe; George C. Schatz; Sebastian Schlücker; Zachary D. Schultz; Emily Xi Tan; Zhong-Qun Tian; Lingzhi Wang; Bert M. Weckhuysen; Wei Xie; Xing Yi Ling; Jinlong Zhang; Zhigang Zhao; Ru-Yu Zhou; Emiliano Cortés;Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Archivio istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité de Nantes: HAL-UNIV-NANTESArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.4c06192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité de Nantes: HAL-UNIV-NANTESArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.4c06192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 14 Jun 2021 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Nano-Optics to controlled..., UKRI | Roll-to-roll Self-assembl..., UKRI | EPSRC Centre for Doctoral... +3 projectsUKRI| Nano-Optics to controlled Nano-Chemistry Programme Grant (NOtCH) ,UKRI| Roll-to-roll Self-assembly of Advanced Photonic NanoMaterials (R2R-4Photonics) ,UKRI| EPSRC Centre for Doctoral Training in Graphene Technology ,EC| MIGHTY ,EC| Emu Cam ,EC| HIENAJessl, Sarah; Engelke, Simon; Copic, Davor; Baumberg, Jeremy J.; De Volder, Michael;pmid: 34240009
pmc: PMC8240089
Technological advances in membrane technology, catalysis, and electrochemical energy storage require the fabrication of controlled pore structures at ever smaller length scales. It is therefore important to develop processes allowing for the fabrication of materials with controlled submicron porous structures. We propose a combination of colloidal lithography and chemical vapor deposition of carbon nanotubes to create continuous straight pores with diameters down to 100 nm in structures with thicknesses of more than 300 μm. These structures offer unique features, including continuous and parallel pores with aspect ratios in excess of 3000, a low pore tortuosity, good electrical conductivity, and electrochemical stability. We demonstrate that these structures can be used in Li-ion batteries by coating the carbon nanotubes with Si as an active anode material.
ACS Applied Nano Mat... arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Nano MaterialsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsanm.1c01157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Applied Nano Mat... arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Nano MaterialsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsanm.1c01157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 15 Oct 2021 United Kingdom, France, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Hybrid Polaritonics, EC | SeSaMe, EC | SOLARX +2 projectsUKRI| Hybrid Polaritonics ,EC| SeSaMe ,EC| SOLARX ,EC| PICOFORCE ,EC| EXMOLSPandya, Raj; Chen, Richard; Gu, Qifei; Sung, Jooyoung; Schnedermann, Christoph; Ojambati, Oluwafemi; Chikkaraddy, Rohit; Gorman, Jeffrey; Jacucci, Gianni; Onelli, Olimpia; Willhammar, Tom; Johnstone, Duncan; Collins, Sean; Midgley, Paul; Auras, Florian; Baikie, Tomi; Jayaprakash, Rahul; Mathevet, Fabrice; Soucek, Richard; Du, Matthew; Alvertis, Antonios; Ashoka, Arjun; Vignolini, Silvia; Lidzey, David; Baumberg, Jeremy; Friend, Richard; Barisien, Thierry; Legrand, Laurent; Chin, Alex W.; Yuen-Zhou, Joel; Saikin, Semion; Kukura, Philipp; Musser, Andrew; Rao, Akshay;AbstractStrong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s−1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons
CORE arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford University Research ArchiveArticle . 2022License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-26617-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford University Research ArchiveArticle . 2022License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-26617-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Aug 2022 United Kingdom, SpainPublisher:American Chemical Society (ACS) Funded by:EC | THOR, EC | PICOFORCEEC| THOR ,EC| PICOFORCEAuthors: Esteban, Ruben; Baumberg, Jeremy J.; Aizpurua, Javier;ConspectusMolecular vibrations constitute one of the smallest mechanical oscillators available for micro-/nanoengineering. The energy and strength of molecular oscillations depend delicately on the attached specific functional groups as well as on the chemical and physical environments. By exploiting the inelastic interaction of molecules with optical photons, Raman scattering can access the information contained in molecular vibrations. However, the low efficiency of the Raman process typically allows only for characterizing large numbers of molecules. To circumvent this limitation, plasmonic resonances supported by metallic nanostructures and nanocavities can be used because they localize and enhance light at optical frequencies, enabling surface-enhanced Raman scattering (SERS), where the Raman signal is increased by many orders of magnitude. This enhancement enables few- or even single-molecule characterization. The coupling between a single molecular vibration and a plasmonic mode constitutes an example of an optomechanical interaction, analogous to that existing between cavity photons and mechanical vibrations. Optomechanical systems have been intensely studied because of their fundamental interest as well as their application in practical implementations of quantum technology and sensing. In this context, SERS brings cavity optomechanics down to the molecular scale and gives access to larger vibrational frequencies associated with molecular motion, offering new possibilities for novel optomechanical nanodevices.The molecular optomechanics description of SERS is recent, and its implications have only started to be explored. In this Account, we describe the current understanding and progress of this new description of SERS, focusing on our own contributions to the field. We first show that the quantum description of molecular optomechanics is fully consistent with standard classical and semiclassical models often used to describe SERS. Furthermore, we note that the molecular optomechanics framework naturally accounts for a rich variety of nonlinear effects in the SERS signal with increasing laser intensity.Furthermore, the molecular optomechanics framework provides a tool particularly suited to addressing novel effects of fundamental and practical interest in SERS, such as the emergence of collective phenomena involving many molecules or the modification of the effective losses and energy of the molecular vibrations due to the plasmon-vibration interaction. As compared to standard optomechanics, the plasmonic resonance often differs from a single Lorentzian mode and thus requires a more detailed description of its optical response. This quantum description of SERS also allows us to address the statistics of the Raman photons emitted, enabling the interpretation of two-color correlations of the emerging photons, with potential use in the generation of nonclassical states of light. Current SERS experimental implementations in organic molecules and two-dimensional layers suggest the interest in further exploring intense pulsed illumination, situations of strong coupling, resonant-SERS, and atomic-scale field confinement.
Accounts of Chemical... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONAccounts of Chemical ResearchArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.accounts.1c00759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 38visibility views 38 download downloads 162 Powered bymore_vert Accounts of Chemical... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONAccounts of Chemical ResearchArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.accounts.1c00759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 Aug 2020 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:SNSF | Gas Diffusion Electrodes ..., UKRI | EPSRC Centre for Doctoral...SNSF| Gas Diffusion Electrodes and Flow Cells for Photoelectrochemical Fuel Synthesis from Carbon Dioxide ,UKRI| EPSRC Centre for Doctoral Training in Sustainable and Functional NanoMotiar Rahaman; Virgil Andrei; Chanon Pornrungroj; Demelza Wright; Jeremy J. Baumberg; Erwin Reisner;Porous dendritic copper–indium metal alloy foam catalysts are interfaced with a perovskite‖BiVO4 tandem device for solar CO2-to-CO conversion under bias-free conditions using water as an electron donor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01279c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01279c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2024 Netherlands, France, ItalyPublisher:American Chemical Society (ACS) Funded by:DFG, UKRI | Mid-IR vibration-assisted..., UKRI | Self-assembled Plasmonic ... +11 projectsDFG ,UKRI| Mid-IR vibration-assisted luminescence & spectroscopies (MIRVALS) ,UKRI| Self-assembled Plasmonic nanoOptics for sustainable Chemistry ,NSF| The Role of Plasmon Initiated Electron Transfer in Enhanced Raman Spectroscopy ,EC| PICOFORCE ,ANR| ZORG ,UKRI| Novel Enhanced Sampling Methods in Multiscale Modeling ,UKRI| EPSRC Centre for Doctoral Training in Topological Design ,NSF| Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations ,MIUR ,UKRI| Ubiquitous Optical Healthcare Technologies (ubOHT) Programme Grant ,NSF| University of Minnesota Materials Research Science and Engineering Center ,EC| OPINCHARGE ,UKRI| Chip-scale Atomic Systems for a Quantum NavigatorAndrei Stefancu; Javier Aizpurua; Ivano Alessandri; Ilko Bald; Jeremy J. Baumberg; Lucas V. Besteiro; Phillip Christopher; Miguel Correa-Duarte; Bart de Nijs; Angela Demetriadou; Renee R. Frontiera; Tomohiro Fukushima; Naomi J. Halas; Prashant K. Jain; Zee Hwan Kim; Dmitry Kurouski; Holger Lange; Jian-Feng Li; Luis M. Liz-Marzán; Ivan T. Lucas; Alfred J. Meixner; Kei Murakoshi; Peter Nordlander; William J. Peveler; Raul Quesada-Cabrera; Emilie Ringe; George C. Schatz; Sebastian Schlücker; Zachary D. Schultz; Emily Xi Tan; Zhong-Qun Tian; Lingzhi Wang; Bert M. Weckhuysen; Wei Xie; Xing Yi Ling; Jinlong Zhang; Zhigang Zhao; Ru-Yu Zhou; Emiliano Cortés;Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Archivio istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité de Nantes: HAL-UNIV-NANTESArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.4c06192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité de Nantes: HAL-UNIV-NANTESArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.4c06192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 14 Jun 2021 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Nano-Optics to controlled..., UKRI | Roll-to-roll Self-assembl..., UKRI | EPSRC Centre for Doctoral... +3 projectsUKRI| Nano-Optics to controlled Nano-Chemistry Programme Grant (NOtCH) ,UKRI| Roll-to-roll Self-assembly of Advanced Photonic NanoMaterials (R2R-4Photonics) ,UKRI| EPSRC Centre for Doctoral Training in Graphene Technology ,EC| MIGHTY ,EC| Emu Cam ,EC| HIENAJessl, Sarah; Engelke, Simon; Copic, Davor; Baumberg, Jeremy J.; De Volder, Michael;pmid: 34240009
pmc: PMC8240089
Technological advances in membrane technology, catalysis, and electrochemical energy storage require the fabrication of controlled pore structures at ever smaller length scales. It is therefore important to develop processes allowing for the fabrication of materials with controlled submicron porous structures. We propose a combination of colloidal lithography and chemical vapor deposition of carbon nanotubes to create continuous straight pores with diameters down to 100 nm in structures with thicknesses of more than 300 μm. These structures offer unique features, including continuous and parallel pores with aspect ratios in excess of 3000, a low pore tortuosity, good electrical conductivity, and electrochemical stability. We demonstrate that these structures can be used in Li-ion batteries by coating the carbon nanotubes with Si as an active anode material.
ACS Applied Nano Mat... arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Nano MaterialsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsanm.1c01157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Applied Nano Mat... arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Applied Nano MaterialsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsanm.1c01157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 15 Oct 2021 United Kingdom, France, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Hybrid Polaritonics, EC | SeSaMe, EC | SOLARX +2 projectsUKRI| Hybrid Polaritonics ,EC| SeSaMe ,EC| SOLARX ,EC| PICOFORCE ,EC| EXMOLSPandya, Raj; Chen, Richard; Gu, Qifei; Sung, Jooyoung; Schnedermann, Christoph; Ojambati, Oluwafemi; Chikkaraddy, Rohit; Gorman, Jeffrey; Jacucci, Gianni; Onelli, Olimpia; Willhammar, Tom; Johnstone, Duncan; Collins, Sean; Midgley, Paul; Auras, Florian; Baikie, Tomi; Jayaprakash, Rahul; Mathevet, Fabrice; Soucek, Richard; Du, Matthew; Alvertis, Antonios; Ashoka, Arjun; Vignolini, Silvia; Lidzey, David; Baumberg, Jeremy; Friend, Richard; Barisien, Thierry; Legrand, Laurent; Chin, Alex W.; Yuen-Zhou, Joel; Saikin, Semion; Kukura, Philipp; Musser, Andrew; Rao, Akshay;AbstractStrong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s−1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons
CORE arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford University Research ArchiveArticle . 2022License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-26617-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford University Research ArchiveArticle . 2022License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-26617-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Aug 2022 United Kingdom, SpainPublisher:American Chemical Society (ACS) Funded by:EC | THOR, EC | PICOFORCEEC| THOR ,EC| PICOFORCEAuthors: Esteban, Ruben; Baumberg, Jeremy J.; Aizpurua, Javier;ConspectusMolecular vibrations constitute one of the smallest mechanical oscillators available for micro-/nanoengineering. The energy and strength of molecular oscillations depend delicately on the attached specific functional groups as well as on the chemical and physical environments. By exploiting the inelastic interaction of molecules with optical photons, Raman scattering can access the information contained in molecular vibrations. However, the low efficiency of the Raman process typically allows only for characterizing large numbers of molecules. To circumvent this limitation, plasmonic resonances supported by metallic nanostructures and nanocavities can be used because they localize and enhance light at optical frequencies, enabling surface-enhanced Raman scattering (SERS), where the Raman signal is increased by many orders of magnitude. This enhancement enables few- or even single-molecule characterization. The coupling between a single molecular vibration and a plasmonic mode constitutes an example of an optomechanical interaction, analogous to that existing between cavity photons and mechanical vibrations. Optomechanical systems have been intensely studied because of their fundamental interest as well as their application in practical implementations of quantum technology and sensing. In this context, SERS brings cavity optomechanics down to the molecular scale and gives access to larger vibrational frequencies associated with molecular motion, offering new possibilities for novel optomechanical nanodevices.The molecular optomechanics description of SERS is recent, and its implications have only started to be explored. In this Account, we describe the current understanding and progress of this new description of SERS, focusing on our own contributions to the field. We first show that the quantum description of molecular optomechanics is fully consistent with standard classical and semiclassical models often used to describe SERS. Furthermore, we note that the molecular optomechanics framework naturally accounts for a rich variety of nonlinear effects in the SERS signal with increasing laser intensity.Furthermore, the molecular optomechanics framework provides a tool particularly suited to addressing novel effects of fundamental and practical interest in SERS, such as the emergence of collective phenomena involving many molecules or the modification of the effective losses and energy of the molecular vibrations due to the plasmon-vibration interaction. As compared to standard optomechanics, the plasmonic resonance often differs from a single Lorentzian mode and thus requires a more detailed description of its optical response. This quantum description of SERS also allows us to address the statistics of the Raman photons emitted, enabling the interpretation of two-color correlations of the emerging photons, with potential use in the generation of nonclassical states of light. Current SERS experimental implementations in organic molecules and two-dimensional layers suggest the interest in further exploring intense pulsed illumination, situations of strong coupling, resonant-SERS, and atomic-scale field confinement.
Accounts of Chemical... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONAccounts of Chemical ResearchArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.accounts.1c00759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 38visibility views 38 download downloads 162 Powered bymore_vert Accounts of Chemical... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONAccounts of Chemical ResearchArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.accounts.1c00759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 18 Aug 2020 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:SNSF | Gas Diffusion Electrodes ..., UKRI | EPSRC Centre for Doctoral...SNSF| Gas Diffusion Electrodes and Flow Cells for Photoelectrochemical Fuel Synthesis from Carbon Dioxide ,UKRI| EPSRC Centre for Doctoral Training in Sustainable and Functional NanoMotiar Rahaman; Virgil Andrei; Chanon Pornrungroj; Demelza Wright; Jeremy J. Baumberg; Erwin Reisner;Porous dendritic copper–indium metal alloy foam catalysts are interfaced with a perovskite‖BiVO4 tandem device for solar CO2-to-CO conversion under bias-free conditions using water as an electron donor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01279c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01279c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu