- home
- Advanced Search
Filters
Year range
-chevron_right GOSource
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 United KingdomPublisher:Elsevier BV Funded by:EC | Sharing CitiesEC| Sharing CitiesIndranil Pan; Indranil Pan; Richard Charlesworth; Edward O’Dwyer; Nilay Shah; Sarah Butler;As Internet of Things (IoT) technologies enable greater communication between energy assets in smart cities, the operational coordination of various energy networks in a city or district becomes more viable. Suitable tools are needed that can harness advanced control and machine learning techniques to achieve environmental, economic and resilience objectives. In this paper, an energy management tool is presented that can offer optimal control, scheduling, forecasting and coordination services to energy assets across a district, enabling optimal decisions under user-defined objectives. The tool presented here can coordinate different sub-systems in a district to avoid the violation of high-level system constraints and is designed in a generic fashion to enable transferable use across different energy sectors. The work demonstrates the potential for a single open-source optimisation framework to be applied across multiple energy vectors, providing local government the opportunity to manage different assets in a coordinated fashion. This is shown through case studies that integrate low-carbon communal heating for social housing with electric vehicle charge-point management to achieve high-level system constraints and local government objectives in the borough of Greenwich, London. The paper illustrates the theoretical methodology, the software architecture and the digital twin-based testing environment underpinning the proposed approach.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/80989Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Cities and SocietyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2020.102412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 45 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/80989Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Cities and SocietyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2020.102412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2015Embargo end date: 01 Jan 2016Publisher:Elsevier BV Authors: Indranil Pan; Saptarshi Das;arXiv: 1611.09802
Fractional order proportional-integral-derivative (FOPID) controllers are designed for load frequency control (LFC) of two interconnected power systems. Conflicting time domain design objectives are considered in a multi objective optimization (MOO) based design framework to design the gains and the fractional differ-integral orders of the FOPID controllers in the two areas. Here, we explore the effect of augmenting two different chaotic maps along with the uniform random number generator (RNG) in the popular MOO algorithm - the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Different measures of quality for MOO e.g. hypervolume indicator, moment of inertia based diversity metric, total Pareto spread, spacing metric are adopted to select the best set of controller parameters from multiple runs of all the NSGA-II variants (i.e. nominal and chaotic versions). The chaotic versions of the NSGA-II algorithm are compared with the standard NSGA-II in terms of solution quality and computational time. In addition, the Pareto optimal fronts showing the trade-off between the two conflicting time domain design objectives are compared to show the advantage of using the FOPID controller over that with simple PID controller. The nature of fast/slow and high/low noise amplification effects of the FOPID structure or the four quadrant operation in the two inter-connected areas of the power system is also explored. A fuzzy logic based method has been adopted next to select the best compromise solution from the best Pareto fronts corresponding to each MOO comparison criteria. The time domain system responses are shown for the fuzzy best compromise solutions under nominal operating conditions. Comparative analysis on the merits and de-merits of each controller structure is reported then. A robustness analysis is also done for the PID and the FOPID controllers. 31 pages, 19 figures, 2 tables
Applied Soft Computi... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asoc.2014.12.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Soft Computi... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asoc.2014.12.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2013Embargo end date: 01 Jan 2013Publisher:Elsevier BV Shantanu Das; Indranil Pan; Sumit Mukherjee; Sumit Mukherjee; Amitava Gupta; Saptarshi Das;arXiv: 1306.3685
In this paper, discrete time higher integer order linear transfer function models have been identified first for a 500 MWe Pressurized Heavy Water Reactor (PHWR) which has highly nonlinear dynamical nature. Linear discrete time models of the nonlinear nuclear reactor have been identified around eight different operating points (power reduction or step-back conditions) with least square estimator (LSE) and its four variants. From the synthetic frequency domain data of these identified discrete time models, fractional order (FO) models with sampled continuous order distribution are identified for the nuclear reactor. This enables design of continuous order Proportional-Integral-Derivative (PID) like compensators in the complex w-plane for global power tracking at a wide range of operating conditions. Modeling of the PHWR is attempted with various levels of discrete commensurate-orders and the achievable accuracies are also elucidated along with the hidden issues, regarding modeling and controller design. Credible simulation studies are presented to show the effectiveness of the proposed reactor modeling and power level controller design. The controller pushes the reactor poles in higher Riemann sheets and thus makes the closed loop system hyper-damped which ensures safer reactor operation at varying dc-gain while making the power tracking temporal response slightly sluggish; but ensuring greater safety margin. 37 pages, 18 figures
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2013.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2013.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2016Embargo end date: 01 Jan 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Indranil Pan; Saptarshi Das;arXiv: 1611.09755
The applicability of fractional order (FO) automatic generation control (AGC) for power system frequency oscillation damping is investigated in this paper, employing distributed energy generation. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell and aqua electrolyzer along with other energy storage devices like the battery and flywheel. The controller is placed in a remote location while receiving and sending signals over an unreliable communication network with stochastic delay. The controller parameters are tuned using robust optimization techniques employing different variants of Particle Swarm Optimization (PSO) and are compared with the corresponding optimal solutions. An archival based strategy is used for reducing the number of function evaluations for the robust optimization methods. The solutions obtained through the robust optimization are able to handle higher variation in the controller gains and orders without significant decrease in the system performance. This is desirable from the FO controller implementation point of view, as the design is able to accommodate variations in the system parameter which may result due to the approximation of FO operators, using different realization methods and order of accuracy. Also a comparison is made between the FO and the integer order (IO) controllers to highlight the merits and demerits of each scheme. 12 pages, 16 figures, 5 tables
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2459766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 167 citations 167 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2459766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2015Embargo end date: 01 Jan 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Indranil Pan; Saptarshi Das;arXiv: 1408.4612
This paper investigates the use of fractional order (FO) controllers for a microgrid. The microgrid employs various autonomous generation systems like wind turbine generator (WTG), solar photovoltaic (PV), diesel energy generator (DEG) and fuel-cells (FC). Other storage devices like the battery energy storage system (BESS) and the flywheel energy storage system (FESS) are also present in the power network. An FO control strategy is employed and the FO-PID controller parameters are tuned with a global optimization algorithm to meet system performance specifications. A kriging based surrogate modeling technique is employed to alleviate the issue of expensive objective function evaluation for the optimization based controller tuning. Numerical simulations are reported to prove the validity of the proposed methods. The results for both the FO and the integer order (IO) controllers are compared with standard evolutionary optimization techniques and the relative merits and demerits of the kriging based surrogate modeling are discussed. This kind of optimization technique is not only limited to this specific case of microgrid control but also can be ported to other computationally expensive power system optimization problems. 9 pages, 13 figures. appears in Smart Grid, IEEE Transactions on, 2014
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2014.2336771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 155 citations 155 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2014.2336771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Edward O’Dwyer; Salvador Acha; Indranil Pan; Indranil Pan; Nilay Shah;handle: 10044/1/66222
Abstract Within the context of the Smart City, the need for intelligent approaches to manage and coordinate the diverse range of supply and conversion technologies and demand applications has been well established. The wide-scale proliferation of sensors coupled with the implementation of embedded computational intelligence algorithms can help to tackle many of the technical challenges associated with this energy systems integration problem. Nonetheless, barriers still exist, as suitable methods are needed to handle complex networks of actors, often with competing objectives, while determining design and operational decisions for systems across a wide spectrum of features and time-scales. This review looks at the current developments in the smart energy sector, focussing on techniques in the main application areas along with relevant implemented examples, while highlighting some of the key challenges currently faced and outlining future pathways for the sector. A detailed overview of a framework developed for the EU H2020 funded Sharing Cities project is also provided to illustrate the nature of the design stages encountered and control hierarchies required. The study aims to summarise the current state of computational intelligence in the field of smart energy management, providing insight into the ways in which current barriers can be overcome.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/66222Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 281 citations 281 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 14visibility views 14 download downloads 1,520 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/66222Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2016Embargo end date: 01 Jan 2016Publisher:Elsevier BV Authors: Indranil Pan; Saptarshi Das; Saptarshi Das;This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. 21 pages, 12 figures, 4 tables
ISA Transactions arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isatra.2015.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 257 citations 257 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert ISA Transactions arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isatra.2015.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Sevket Durucan; Indranil Pan; Masoud Babaei; Anna Korre;AbstractAn Artificial Neural Network surrogate modelling approach was used to optimise CO2 storage into a highly heterogeneous semi- closed saline aquifer which exhibits considerable pressure increase due to injection. The methodology was implemented to minimise the overall field pressure and well bottom-hole pressures, and to maximise the amount of dissolved and trapped CO2 in the storage aquifer. Different realisations of permeability and porosity were stochastically generated to represent the uncertainty in the model. Artificial neural networks were used to reduce the computational time of the optimisation procedure by approximating the objective functions for CO2 storage as surrogates to the expensive solutions of flow by the simulator. A multi- objective evolutionary algorithm was run on these approximators to generate solutions of the multi-objective optimisation's Pareto front. These solutions were compared with the solutions obtained by the computationally expensive optimisation and they were found to give satisfactory results, illustrating that this methodology can be a viable, and low computational cost alternative for optimisation in CO2 storage design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Indranil Pan; Masoud Babaei; Sevket Durucan; Anna Korre;AbstractThis study aimed at addressing the problem of maximising the trapped amount of CO2 in a reservoir with heterogeneous and uncertain petro-physical properties. A multi-period injection strategy is adopted and an optimisation algorithm is employed to find out the injection quantities in different wells at different spans of time. A number of realisations of permeability and porosity are generated to represent the uncertainty in the model and are integrated into the optimisation framework. The optimisation algorithm employs a kriging based meta-modelling technique in each iteration to decide on the best sampling point for the successive iteration. This technique reduces the computational run time as the number of function calls to the actual flow solver is drastically reduced. As compared with Genetic Algorithm, the methodology gives better results in terms of computational time and convergence characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2012Embargo end date: 01 Jan 2012Publisher:Elsevier BV Authors: Indranil Pan; Indranil Pan; Saptarshi Das;arXiv: 1205.1765
In this paper, a fractional order (FO) PI��D��controller is designed to take care of various contradictory objective functions for an Automatic Voltage Regulator (AVR) system. An improved evolutionary Non-dominated Sorting Genetic Algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the PI��D��and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order PI��D��controller. 30 pages, 14 figures
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2012License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2012.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 164 citations 164 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2012License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2012.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2020 United KingdomPublisher:Elsevier BV Funded by:EC | Sharing CitiesEC| Sharing CitiesIndranil Pan; Indranil Pan; Richard Charlesworth; Edward O’Dwyer; Nilay Shah; Sarah Butler;As Internet of Things (IoT) technologies enable greater communication between energy assets in smart cities, the operational coordination of various energy networks in a city or district becomes more viable. Suitable tools are needed that can harness advanced control and machine learning techniques to achieve environmental, economic and resilience objectives. In this paper, an energy management tool is presented that can offer optimal control, scheduling, forecasting and coordination services to energy assets across a district, enabling optimal decisions under user-defined objectives. The tool presented here can coordinate different sub-systems in a district to avoid the violation of high-level system constraints and is designed in a generic fashion to enable transferable use across different energy sectors. The work demonstrates the potential for a single open-source optimisation framework to be applied across multiple energy vectors, providing local government the opportunity to manage different assets in a coordinated fashion. This is shown through case studies that integrate low-carbon communal heating for social housing with electric vehicle charge-point management to achieve high-level system constraints and local government objectives in the borough of Greenwich, London. The paper illustrates the theoretical methodology, the software architecture and the digital twin-based testing environment underpinning the proposed approach.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/80989Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Cities and SocietyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2020.102412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 95 citations 95 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 45 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/80989Data sources: Bielefeld Academic Search Engine (BASE)Sustainable Cities and SocietyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2020.102412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2015Embargo end date: 01 Jan 2016Publisher:Elsevier BV Authors: Indranil Pan; Saptarshi Das;arXiv: 1611.09802
Fractional order proportional-integral-derivative (FOPID) controllers are designed for load frequency control (LFC) of two interconnected power systems. Conflicting time domain design objectives are considered in a multi objective optimization (MOO) based design framework to design the gains and the fractional differ-integral orders of the FOPID controllers in the two areas. Here, we explore the effect of augmenting two different chaotic maps along with the uniform random number generator (RNG) in the popular MOO algorithm - the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Different measures of quality for MOO e.g. hypervolume indicator, moment of inertia based diversity metric, total Pareto spread, spacing metric are adopted to select the best set of controller parameters from multiple runs of all the NSGA-II variants (i.e. nominal and chaotic versions). The chaotic versions of the NSGA-II algorithm are compared with the standard NSGA-II in terms of solution quality and computational time. In addition, the Pareto optimal fronts showing the trade-off between the two conflicting time domain design objectives are compared to show the advantage of using the FOPID controller over that with simple PID controller. The nature of fast/slow and high/low noise amplification effects of the FOPID structure or the four quadrant operation in the two inter-connected areas of the power system is also explored. A fuzzy logic based method has been adopted next to select the best compromise solution from the best Pareto fronts corresponding to each MOO comparison criteria. The time domain system responses are shown for the fuzzy best compromise solutions under nominal operating conditions. Comparative analysis on the merits and de-merits of each controller structure is reported then. A robustness analysis is also done for the PID and the FOPID controllers. 31 pages, 19 figures, 2 tables
Applied Soft Computi... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asoc.2014.12.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Soft Computi... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asoc.2014.12.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2013Embargo end date: 01 Jan 2013Publisher:Elsevier BV Shantanu Das; Indranil Pan; Sumit Mukherjee; Sumit Mukherjee; Amitava Gupta; Saptarshi Das;arXiv: 1306.3685
In this paper, discrete time higher integer order linear transfer function models have been identified first for a 500 MWe Pressurized Heavy Water Reactor (PHWR) which has highly nonlinear dynamical nature. Linear discrete time models of the nonlinear nuclear reactor have been identified around eight different operating points (power reduction or step-back conditions) with least square estimator (LSE) and its four variants. From the synthetic frequency domain data of these identified discrete time models, fractional order (FO) models with sampled continuous order distribution are identified for the nuclear reactor. This enables design of continuous order Proportional-Integral-Derivative (PID) like compensators in the complex w-plane for global power tracking at a wide range of operating conditions. Modeling of the PHWR is attempted with various levels of discrete commensurate-orders and the achievable accuracies are also elucidated along with the hidden issues, regarding modeling and controller design. Credible simulation studies are presented to show the effectiveness of the proposed reactor modeling and power level controller design. The controller pushes the reactor poles in higher Riemann sheets and thus makes the closed loop system hyper-damped which ensures safer reactor operation at varying dc-gain while making the power tracking temporal response slightly sluggish; but ensuring greater safety margin. 37 pages, 18 figures
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2013.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2013License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2013.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2016Embargo end date: 01 Jan 2016Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Indranil Pan; Saptarshi Das;arXiv: 1611.09755
The applicability of fractional order (FO) automatic generation control (AGC) for power system frequency oscillation damping is investigated in this paper, employing distributed energy generation. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell and aqua electrolyzer along with other energy storage devices like the battery and flywheel. The controller is placed in a remote location while receiving and sending signals over an unreliable communication network with stochastic delay. The controller parameters are tuned using robust optimization techniques employing different variants of Particle Swarm Optimization (PSO) and are compared with the corresponding optimal solutions. An archival based strategy is used for reducing the number of function evaluations for the robust optimization methods. The solutions obtained through the robust optimization are able to handle higher variation in the controller gains and orders without significant decrease in the system performance. This is desirable from the FO controller implementation point of view, as the design is able to accommodate variations in the system parameter which may result due to the approximation of FO operators, using different realization methods and order of accuracy. Also a comparison is made between the FO and the integer order (IO) controllers to highlight the merits and demerits of each scheme. 12 pages, 16 figures, 5 tables
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2459766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 167 citations 167 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2016 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2459766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2015Embargo end date: 01 Jan 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Indranil Pan; Saptarshi Das;arXiv: 1408.4612
This paper investigates the use of fractional order (FO) controllers for a microgrid. The microgrid employs various autonomous generation systems like wind turbine generator (WTG), solar photovoltaic (PV), diesel energy generator (DEG) and fuel-cells (FC). Other storage devices like the battery energy storage system (BESS) and the flywheel energy storage system (FESS) are also present in the power network. An FO control strategy is employed and the FO-PID controller parameters are tuned with a global optimization algorithm to meet system performance specifications. A kriging based surrogate modeling technique is employed to alleviate the issue of expensive objective function evaluation for the optimization based controller tuning. Numerical simulations are reported to prove the validity of the proposed methods. The results for both the FO and the integer order (IO) controllers are compared with standard evolutionary optimization techniques and the relative merits and demerits of the kriging based surrogate modeling are discussed. This kind of optimization technique is not only limited to this specific case of microgrid control but also can be ported to other computationally expensive power system optimization problems. 9 pages, 13 figures. appears in Smart Grid, IEEE Transactions on, 2014
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2014.2336771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 155 citations 155 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2014License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2014.2336771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Edward O’Dwyer; Salvador Acha; Indranil Pan; Indranil Pan; Nilay Shah;handle: 10044/1/66222
Abstract Within the context of the Smart City, the need for intelligent approaches to manage and coordinate the diverse range of supply and conversion technologies and demand applications has been well established. The wide-scale proliferation of sensors coupled with the implementation of embedded computational intelligence algorithms can help to tackle many of the technical challenges associated with this energy systems integration problem. Nonetheless, barriers still exist, as suitable methods are needed to handle complex networks of actors, often with competing objectives, while determining design and operational decisions for systems across a wide spectrum of features and time-scales. This review looks at the current developments in the smart energy sector, focussing on techniques in the main application areas along with relevant implemented examples, while highlighting some of the key challenges currently faced and outlining future pathways for the sector. A detailed overview of a framework developed for the EU H2020 funded Sharing Cities project is also provided to illustrate the nature of the design stages encountered and control hierarchies required. The study aims to summarise the current state of computational intelligence in the field of smart energy management, providing insight into the ways in which current barriers can be overcome.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/66222Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 281 citations 281 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 14visibility views 14 download downloads 1,520 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/66222Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2016Embargo end date: 01 Jan 2016Publisher:Elsevier BV Authors: Indranil Pan; Saptarshi Das; Saptarshi Das;This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. 21 pages, 12 figures, 4 tables
ISA Transactions arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isatra.2015.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 257 citations 257 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert ISA Transactions arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isatra.2015.03.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Sevket Durucan; Indranil Pan; Masoud Babaei; Anna Korre;AbstractAn Artificial Neural Network surrogate modelling approach was used to optimise CO2 storage into a highly heterogeneous semi- closed saline aquifer which exhibits considerable pressure increase due to injection. The methodology was implemented to minimise the overall field pressure and well bottom-hole pressures, and to maximise the amount of dissolved and trapped CO2 in the storage aquifer. Different realisations of permeability and porosity were stochastically generated to represent the uncertainty in the model. Artificial neural networks were used to reduce the computational time of the optimisation procedure by approximating the objective functions for CO2 storage as surrogates to the expensive solutions of flow by the simulator. A multi- objective evolutionary algorithm was run on these approximators to generate solutions of the multi-objective optimisation's Pareto front. These solutions were compared with the solutions obtained by the computationally expensive optimisation and they were found to give satisfactory results, illustrating that this methodology can be a viable, and low computational cost alternative for optimisation in CO2 storage design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.377&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Indranil Pan; Masoud Babaei; Sevket Durucan; Anna Korre;AbstractThis study aimed at addressing the problem of maximising the trapped amount of CO2 in a reservoir with heterogeneous and uncertain petro-physical properties. A multi-period injection strategy is adopted and an optimisation algorithm is employed to find out the injection quantities in different wells at different spans of time. A number of realisations of permeability and porosity are generated to represent the uncertainty in the model and are integrated into the optimisation framework. The optimisation algorithm employs a kriging based meta-modelling technique in each iteration to decide on the best sampling point for the successive iteration. This technique reduces the computational run time as the number of function calls to the actual flow solver is drastically reduced. As compared with Genetic Algorithm, the methodology gives better results in terms of computational time and convergence characteristics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2012Embargo end date: 01 Jan 2012Publisher:Elsevier BV Authors: Indranil Pan; Indranil Pan; Saptarshi Das;arXiv: 1205.1765
In this paper, a fractional order (FO) PI��D��controller is designed to take care of various contradictory objective functions for an Automatic Voltage Regulator (AVR) system. An improved evolutionary Non-dominated Sorting Genetic Algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the PI��D��and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order PI��D��controller. 30 pages, 14 figures
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2012License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2012.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 164 citations 164 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2012License: arXiv Non-Exclusive DistributionData sources: DataciteInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2012.06.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu