- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:American Chemical Society (ACS) Funded by:EC | NANO-TECEC| NANO-TECAuthors: Martín Pérez, Jaime; Nogales, Aurora; Martín-González, Marisol;doi: 10.1021/ma302516e
handle: 10261/78139
We present the simple and controllable fabrication of ordered arrays of poly(3-hexylthiophene) (P3HT) solid nanowires and hollow nanotubes by infiltrating the molten polymer into AAO nanopores at temperatures promoting partial (260 C) and complete (280 C) wetting regimes, respectively. We show that such wetting regimes (and thus the formation of nanowires or nanotubes) are associated with a different internal structure in the P3HT melt. At 260 C, the P3HT organizes into a smectic mesophase. Thus, the translational motion of the P3HT molecule through the phase-separated structure would involve an enthalpic penalty, which prevents the molecular diffusion required for achieving the complete wetting regime. Consequently, the P3HT wets the nanopores in partial wetting regime, so that solid nanowires are formed. In contrast, the melt is structurally isotropic at 280 C, which promotes the complete wetting regime, yielding nanotubes. Such a smectic mesophase is also present in P3HT confined into 350 nm in diameter pores. Furthermore, we observe the formation of a new type of nanostructure consisting of twinned nanotubes (two pores formed from one original pore) as a consequence of the appearance of a longitudinal meniscus which divided the hollow interior of the initial nanotube into two independent compartments. Lastly, we use the capillary rise of the P3HT melt along the cylindrical nanopores as a >coarse> nanoscale viscosimetry experiment for the measurement of its viscosity value under confinement. The physical behavior observed for P3HT might be extrapolated to other semiconducting polymers with similar comblike molecular architectures with applications in optoelectronics, thermoelectrics, and photovoltaics (like other poly(alkylthiophenes), polycarbazoles, polyfluorenes, polyphenylenes, etc.). © 2013 American Chemical Society. ERC 2008 Starting Grant “NanoTEC” number 240497. Spanish Ministry Economy and Competitiveness (Project MAT2008-03232 and MAT2011-23455). Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ma302516e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 23 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ma302516e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:American Chemical Society (ACS) Funded by:EC | NANO-TECEC| NANO-TECAuthors: Martín Pérez, Jaime; Nogales, Aurora; Martín-González, Marisol;doi: 10.1021/ma302516e
handle: 10261/78139
We present the simple and controllable fabrication of ordered arrays of poly(3-hexylthiophene) (P3HT) solid nanowires and hollow nanotubes by infiltrating the molten polymer into AAO nanopores at temperatures promoting partial (260 C) and complete (280 C) wetting regimes, respectively. We show that such wetting regimes (and thus the formation of nanowires or nanotubes) are associated with a different internal structure in the P3HT melt. At 260 C, the P3HT organizes into a smectic mesophase. Thus, the translational motion of the P3HT molecule through the phase-separated structure would involve an enthalpic penalty, which prevents the molecular diffusion required for achieving the complete wetting regime. Consequently, the P3HT wets the nanopores in partial wetting regime, so that solid nanowires are formed. In contrast, the melt is structurally isotropic at 280 C, which promotes the complete wetting regime, yielding nanotubes. Such a smectic mesophase is also present in P3HT confined into 350 nm in diameter pores. Furthermore, we observe the formation of a new type of nanostructure consisting of twinned nanotubes (two pores formed from one original pore) as a consequence of the appearance of a longitudinal meniscus which divided the hollow interior of the initial nanotube into two independent compartments. Lastly, we use the capillary rise of the P3HT melt along the cylindrical nanopores as a >coarse> nanoscale viscosimetry experiment for the measurement of its viscosity value under confinement. The physical behavior observed for P3HT might be extrapolated to other semiconducting polymers with similar comblike molecular architectures with applications in optoelectronics, thermoelectrics, and photovoltaics (like other poly(alkylthiophenes), polycarbazoles, polyfluorenes, polyphenylenes, etc.). © 2013 American Chemical Society. ERC 2008 Starting Grant “NanoTEC” number 240497. Spanish Ministry Economy and Competitiveness (Project MAT2008-03232 and MAT2011-23455). Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ma302516e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 23 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ma302516e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | NANO-TECEC| NANO-TECAuthors: Marisol Martín-González; Olga Caballero-Calero; José F. Fernández; Jaime Martín; +1 AuthorsMarisol Martín-González; Olga Caballero-Calero; José F. Fernández; Jaime Martín; Jaime Martín;Three-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures. Here we report the simple fabrication of a template based on anodic aluminium oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100-nm range. The 3D templates are then employed to achieve 3D, ordered nanowire networks in Bi2Te3 and polystyrene. Finally, we demonstrate the photonic crystal behaviour of both the template and the polystyrene 3D nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals and semiconductors.
Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 41visibility views 41 download downloads 56 Powered bymore_vert Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | NANO-TECEC| NANO-TECAuthors: Marisol Martín-González; Olga Caballero-Calero; José F. Fernández; Jaime Martín; +1 AuthorsMarisol Martín-González; Olga Caballero-Calero; José F. Fernández; Jaime Martín; Jaime Martín;Three-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures. Here we report the simple fabrication of a template based on anodic aluminium oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100-nm range. The 3D templates are then employed to achieve 3D, ordered nanowire networks in Bi2Te3 and polystyrene. Finally, we demonstrate the photonic crystal behaviour of both the template and the polystyrene 3D nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals and semiconductors.
Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 41visibility views 41 download downloads 56 Powered bymore_vert Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Saudi Arabia, Spain, Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | CAPaCITy, UKRI | Application Targeted and ...EC| CAPaCITy ,UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarDing, Bowen; Jo, Il-Young; Yu, Hang; Kim, Ji Hwan; Marsh, Adam V.; Gutiérrez-Fernández, Edgar; Ramos, Nicolás; Rapley, Charlotte L.; Rimmele, Martina; He, Qiao; Martín, Jaime; Gasparini, Nicola; Nelson, Jenny; Yoon, Myung-Han; Heeney, Martin;Emergent bioelectronic technologies are underpinned by the organic electrochemical transistor (OECT), which employs an electrolyte medium to modulate the conductivity of its organic semiconductor channel. Here we utilize postpolymerization modification (PPM) on a conjugated polymer backbone to directly introduce glycolated or anionic side chains via fluoride displacement. The resulting polymers demonstrated increased volumetric capacitances, with subdued swelling, compared to their parent polymer in p-type enhancement mode OECTs. This increase in capacitance was attributed to their modified side chain configurations enabling cationic charge compensation for thin film electrochemical oxidation, as deduced from electrochemical quartz crystal microbalance measurements. An overall improvement in OECT performance was recorded for the hybrid glycol/ionic polymer compared to the parent, owing to its low swelling and bimodal crystalline orientation as imaged by grazing-incidence wide-angle X-ray scattering, enabling its high charge mobility at 1.02 cm2·V-1·s-1. Compromised device performance was recorded for the fully glycolated derivative compared to the parent, which was linked to its limited face-on stacking, which hindered OECT charge mobility at 0.26 cm2·V-1·s-1, despite its high capacitance. These results highlight the effectiveness of anionic side chain attachment by PPM as a means of increasing the volumetric capacitance of p-type conjugated polymers for OECTs, while retaining solid-state macromolecular properties that facilitate hole transport.
Chemistry of Materia... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110431Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c00327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemistry of Materia... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110431Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c00327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Saudi Arabia, Spain, Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | CAPaCITy, UKRI | Application Targeted and ...EC| CAPaCITy ,UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarDing, Bowen; Jo, Il-Young; Yu, Hang; Kim, Ji Hwan; Marsh, Adam V.; Gutiérrez-Fernández, Edgar; Ramos, Nicolás; Rapley, Charlotte L.; Rimmele, Martina; He, Qiao; Martín, Jaime; Gasparini, Nicola; Nelson, Jenny; Yoon, Myung-Han; Heeney, Martin;Emergent bioelectronic technologies are underpinned by the organic electrochemical transistor (OECT), which employs an electrolyte medium to modulate the conductivity of its organic semiconductor channel. Here we utilize postpolymerization modification (PPM) on a conjugated polymer backbone to directly introduce glycolated or anionic side chains via fluoride displacement. The resulting polymers demonstrated increased volumetric capacitances, with subdued swelling, compared to their parent polymer in p-type enhancement mode OECTs. This increase in capacitance was attributed to their modified side chain configurations enabling cationic charge compensation for thin film electrochemical oxidation, as deduced from electrochemical quartz crystal microbalance measurements. An overall improvement in OECT performance was recorded for the hybrid glycol/ionic polymer compared to the parent, owing to its low swelling and bimodal crystalline orientation as imaged by grazing-incidence wide-angle X-ray scattering, enabling its high charge mobility at 1.02 cm2·V-1·s-1. Compromised device performance was recorded for the fully glycolated derivative compared to the parent, which was linked to its limited face-on stacking, which hindered OECT charge mobility at 0.26 cm2·V-1·s-1, despite its high capacitance. These results highlight the effectiveness of anionic side chain attachment by PPM as a means of increasing the volumetric capacitance of p-type conjugated polymers for OECTs, while retaining solid-state macromolecular properties that facilitate hole transport.
Chemistry of Materia... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110431Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c00327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemistry of Materia... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110431Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c00327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, France, SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NANO-TECEC| NANO-TECMiguel Muñoz Rojo; Jaime Martín; Stéphane Grauby; Theodorian Borca-Tasciuc; Stefan Dilhaire; Marisol Martin-Gonzalez;Thermal conductivity reduction is observed in P3HT nanowires inside porous alumina, upon size confinement due to a change in crystal orientation.
Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014License: CC BY SAData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1039/c4nr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4nr00107a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 38visibility views 38 download downloads 87 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014License: CC BY SAData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1039/c4nr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4nr00107a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, France, SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NANO-TECEC| NANO-TECMiguel Muñoz Rojo; Jaime Martín; Stéphane Grauby; Theodorian Borca-Tasciuc; Stefan Dilhaire; Marisol Martin-Gonzalez;Thermal conductivity reduction is observed in P3HT nanowires inside porous alumina, upon size confinement due to a change in crystal orientation.
Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014License: CC BY SAData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1039/c4nr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4nr00107a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 38visibility views 38 download downloads 87 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014License: CC BY SAData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1039/c4nr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4nr00107a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:IOP Publishing Funded by:EC | NANO-TECEC| NANO-TECAuthors: Martín Pérez, Jaime; Martín-González, Marisol; Campo, Ángel Adolfo del; Jiménez Reinosa, Julián; +1 AuthorsMartín Pérez, Jaime; Martín-González, Marisol; Campo, Ángel Adolfo del; Jiménez Reinosa, Julián; Fernández Lozano, José Francisco;We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm(2). The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm(2). The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130-140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm(2)-scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array.
Nanotechnology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/23/38/385305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 125 Powered bymore_vert Nanotechnology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/23/38/385305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:IOP Publishing Funded by:EC | NANO-TECEC| NANO-TECAuthors: Martín Pérez, Jaime; Martín-González, Marisol; Campo, Ángel Adolfo del; Jiménez Reinosa, Julián; +1 AuthorsMartín Pérez, Jaime; Martín-González, Marisol; Campo, Ángel Adolfo del; Jiménez Reinosa, Julián; Fernández Lozano, José Francisco;We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm(2). The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm(2). The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130-140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm(2)-scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array.
Nanotechnology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/23/38/385305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 125 Powered bymore_vert Nanotechnology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/23/38/385305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United Kingdom, Spain, SpainPublisher:Wiley Funded by:UKRI | Application Targeted and ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarBowen Ding; Gunwoo Kim; Youngseok Kim; Flurin D. Eisner; Edgar Gutiérrez‐Fernández; Jaime Martín; Myung‐Han Yoon; Martin Heeney;AbstractTwo new glycolated semiconducting polymers PgBT(F)2gT and PgBT(F)2gTT of differing backbone curvatures were designed and synthesised for application as p‐type accumulation mode organic electrochemical transistor (OECT) materials. Both polymers demonstrated stable and reversible oxidation, accessible within the aqueous electrochemical window, to generate polaronic charge carriers. OECTs fabricated from PgBT(F)2gT featuring a curved backbone geometry attained a higher volumetric capacitance of 170 F cm−3. However, PgBT(F)2gTT with a linear backbone displayed overall superior OECT performance with a normalised peak transconductance of 3.00×104 mS cm−1, owing to its enhanced order, expediting the charge mobility to 0.931 cm2 V−1 s−1.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94051Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93458Data sources: Bielefeld Academic Search Engine (BASE)Angewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202106084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94051Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93458Data sources: Bielefeld Academic Search Engine (BASE)Angewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202106084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United Kingdom, Spain, SpainPublisher:Wiley Funded by:UKRI | Application Targeted and ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarBowen Ding; Gunwoo Kim; Youngseok Kim; Flurin D. Eisner; Edgar Gutiérrez‐Fernández; Jaime Martín; Myung‐Han Yoon; Martin Heeney;AbstractTwo new glycolated semiconducting polymers PgBT(F)2gT and PgBT(F)2gTT of differing backbone curvatures were designed and synthesised for application as p‐type accumulation mode organic electrochemical transistor (OECT) materials. Both polymers demonstrated stable and reversible oxidation, accessible within the aqueous electrochemical window, to generate polaronic charge carriers. OECTs fabricated from PgBT(F)2gT featuring a curved backbone geometry attained a higher volumetric capacitance of 170 F cm−3. However, PgBT(F)2gTT with a linear backbone displayed overall superior OECT performance with a normalised peak transconductance of 3.00×104 mS cm−1, owing to its enhanced order, expediting the charge mobility to 0.931 cm2 V−1 s−1.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94051Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93458Data sources: Bielefeld Academic Search Engine (BASE)Angewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202106084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94051Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93458Data sources: Bielefeld Academic Search Engine (BASE)Angewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202106084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Funded by:EC | NANO-TECEC| NANO-TECAuthors: Jaime Martín; Cristina V. Manzano; Marisol Martín-González;handle: 10261/51366
The growth of self-ordered anodic aluminum oxide (AAO) templates with pore diameters in the 140-400 nm range is achieved by anodization in phosphoric acid at low temperatures (-4 °C). The procedure used in this study is able to completely avoid the >burning> of the oxide, highly frequent in anodizations in phosphoric acid solutions at high voltages. The current density measured during the anodizations is rather low, 0.6-0.7 mA/cm2; therefore, low growth rates have been also measured (<2 μm/h). AAO templates present a relatively low porosity value of 8.4%. However, a considerable pore-enlargement-rate (vΔd = 0.636 ± 0.101 nm/h) has been observed as a consequence of the chemical dissolution of the pore walls during the anodization. Thus, the results reported here constitute an exhaustive study on the preparation of large-diameter-pore self-ordered AAO templates that enables both to access to pore diameters up to now inaccessible and to efficiently overcome the difficulties of their fabrication process ascribed to its aggressive reaction conditions. © 2011 Elsevier Inc. All rights reserved. Authors want to thank the ERC 2008 Starting Grant number 240497 for financial support. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMicroporous and Mesoporous MaterialsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.mi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2011.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 49visibility views 49 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMicroporous and Mesoporous MaterialsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.mi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2011.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Funded by:EC | NANO-TECEC| NANO-TECAuthors: Jaime Martín; Cristina V. Manzano; Marisol Martín-González;handle: 10261/51366
The growth of self-ordered anodic aluminum oxide (AAO) templates with pore diameters in the 140-400 nm range is achieved by anodization in phosphoric acid at low temperatures (-4 °C). The procedure used in this study is able to completely avoid the >burning> of the oxide, highly frequent in anodizations in phosphoric acid solutions at high voltages. The current density measured during the anodizations is rather low, 0.6-0.7 mA/cm2; therefore, low growth rates have been also measured (<2 μm/h). AAO templates present a relatively low porosity value of 8.4%. However, a considerable pore-enlargement-rate (vΔd = 0.636 ± 0.101 nm/h) has been observed as a consequence of the chemical dissolution of the pore walls during the anodization. Thus, the results reported here constitute an exhaustive study on the preparation of large-diameter-pore self-ordered AAO templates that enables both to access to pore diameters up to now inaccessible and to efficiently overcome the difficulties of their fabrication process ascribed to its aggressive reaction conditions. © 2011 Elsevier Inc. All rights reserved. Authors want to thank the ERC 2008 Starting Grant number 240497 for financial support. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMicroporous and Mesoporous MaterialsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.mi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2011.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 49visibility views 49 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMicroporous and Mesoporous MaterialsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.mi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2011.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, Saudi Arabia, Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Application Targeted and ..., UKRI | Multielectron photoredox ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,UKRI| Multielectron photoredox catalysts based on charge accumulation in conjugated macrocyclesFilip Aniés; Francesco Furlan; Zhuoran Qiao; Valentina Pirela; Matthew Bidwell; Martina Rimmele; Jaime Martín; Nicola Gasparini; Martin Heeney;doi: 10.1039/d2tc05018h
handle: 10754/690110
Unveiling the impact of different structural isomers of carborane-containing non-fullerene acceptors on optoelectronic properties and organic photovoltaic performance.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYFull-Text: http://xlink.rsc.org/?DOI=D2TC05018HData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry CArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2tc05018h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYFull-Text: http://xlink.rsc.org/?DOI=D2TC05018HData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry CArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2tc05018h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, Saudi Arabia, Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Application Targeted and ..., UKRI | Multielectron photoredox ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,UKRI| Multielectron photoredox catalysts based on charge accumulation in conjugated macrocyclesFilip Aniés; Francesco Furlan; Zhuoran Qiao; Valentina Pirela; Matthew Bidwell; Martina Rimmele; Jaime Martín; Nicola Gasparini; Martin Heeney;doi: 10.1039/d2tc05018h
handle: 10754/690110
Unveiling the impact of different structural isomers of carborane-containing non-fullerene acceptors on optoelectronic properties and organic photovoltaic performance.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYFull-Text: http://xlink.rsc.org/?DOI=D2TC05018HData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry CArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2tc05018h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYFull-Text: http://xlink.rsc.org/?DOI=D2TC05018HData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry CArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2tc05018h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NANO-TECEC| NANO-TECJaime Martín; Mariano Campoy-Quiles; Aurora Nogales; Miquel Garriga; M. Isabel Alonso; Alejandro R. Goñi; Marisol Martín-González;We study the structure of poly(3-hexylthiophene) (P3HT) subjected to nanoscale confinement in two dimensions (2D) as imposed by the rigid walls of nanopore anodic aluminum oxide (AAO) templates. P3HT nanowires with aspect ratios (length-to-diameter) above 1000 and diameters ranging between 15 nm and 350 nm are produced in the pores of the AAO templates via two processing routes. These are, namely, drying a solution or cooling from the melt. Our study focuses on the effects of nanoconfinement on the semicrystalline nature of the nanowires, the orientation of crystals, and the evolution of the structures that P3HT might develop under confinement, which we investigate by combining imaging (SEM), spectroscopic (FTIR, photoluminescence) and structural characterization (WAXS, DSC) techniques. Solution-processed P3HT nanowires are essentially amorphous and porous, whereas melt-processed nanowires are semicrystalline, and present a more compact morphology and smoother surfaces. In the latter case, the orientation of crystals was found to strongly depend on the pore diameter. In large diameter nanowires (250 nm and 120 nm), crystals are oriented laying the π-π stacking direction parallel to the nanowire axis. In contrast, in small diameter nanowires, the π-π stacking direction is mainly perpendicular to the nanowires, as crystals are likely to nucleate at pore walls. The structural evolution of P3HT upon heating into weakly (250 nm in diameter) and strongly (15 nm in diameter) confining pores has been studied. A complex set of structures is observed, i.e., crystals, a solid layered mesophase, a nematic/smectic mesophase, and the isotropic melt. Interestingly, a rare crystal polymorph (form II) is also observed under strong confinement conditions together with the usual lamellar crystal form I. Furthermore, we show that nanoconfinement stabilizes form II: such crystals are still present at 210 °C while in the bulk they get converted to form I crystals at around 50 °C.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/c3sm...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3sm52378k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/c3sm...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3sm52378k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NANO-TECEC| NANO-TECJaime Martín; Mariano Campoy-Quiles; Aurora Nogales; Miquel Garriga; M. Isabel Alonso; Alejandro R. Goñi; Marisol Martín-González;We study the structure of poly(3-hexylthiophene) (P3HT) subjected to nanoscale confinement in two dimensions (2D) as imposed by the rigid walls of nanopore anodic aluminum oxide (AAO) templates. P3HT nanowires with aspect ratios (length-to-diameter) above 1000 and diameters ranging between 15 nm and 350 nm are produced in the pores of the AAO templates via two processing routes. These are, namely, drying a solution or cooling from the melt. Our study focuses on the effects of nanoconfinement on the semicrystalline nature of the nanowires, the orientation of crystals, and the evolution of the structures that P3HT might develop under confinement, which we investigate by combining imaging (SEM), spectroscopic (FTIR, photoluminescence) and structural characterization (WAXS, DSC) techniques. Solution-processed P3HT nanowires are essentially amorphous and porous, whereas melt-processed nanowires are semicrystalline, and present a more compact morphology and smoother surfaces. In the latter case, the orientation of crystals was found to strongly depend on the pore diameter. In large diameter nanowires (250 nm and 120 nm), crystals are oriented laying the π-π stacking direction parallel to the nanowire axis. In contrast, in small diameter nanowires, the π-π stacking direction is mainly perpendicular to the nanowires, as crystals are likely to nucleate at pore walls. The structural evolution of P3HT upon heating into weakly (250 nm in diameter) and strongly (15 nm in diameter) confining pores has been studied. A complex set of structures is observed, i.e., crystals, a solid layered mesophase, a nematic/smectic mesophase, and the isotropic melt. Interestingly, a rare crystal polymorph (form II) is also observed under strong confinement conditions together with the usual lamellar crystal form I. Furthermore, we show that nanoconfinement stabilizes form II: such crystals are still present at 210 °C while in the bulk they get converted to form I crystals at around 50 °C.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/c3sm...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3sm52378k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/c3sm...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3sm52378k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Spain, Saudi Arabia, United KingdomPublisher:Wiley Funded by:UKRI | Application Targeted and ..., UKRI | Multielectron photoredox ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,UKRI| Multielectron photoredox catalysts based on charge accumulation in conjugated macrocyclesXiantao Hu; Zhuoran Qiao; Davide Nodari; Qiao He; Jesika Asatryan; Martina Rimmele; Zhili Chen; Jaime Martín; Nicola Gasparini; Martin Heeney;handle: 10754/695701 , 10044/1/110412
AbstractTwo fully non‐fused small‐molecule acceptors BTIC‐1 and BTIC‐2 are reported for application in near‐infrared organic photodetectors (NIR OPDs). Both acceptors contain the same conjugated backbone but differing sidechain regiochemistry, affording significant differences in their optical properties. The head‐to‐head arrangement of BTIC‐2 results in a reduction of optical band gap of 0.17 eV compared to BTIC‐1, which contains a head‐to‐tail arrangement, with absorption spanning the visible and near‐IR regions up to 900 nm. These differences are rationalized on the basis of non‐covalent intramolecular interactions facilitating a more co‐planar conformation for BTIC‐2. OPDs based on PM6:BTIC‐2 deliver a low dark current density of 2.4 × 10−7 A cm−2, leading to a superior specific detectivity of 1.7 × 1011 Jones at 828 nm at ‐2 V. The optimized device exhibits an ultrafast photo response of 2.6 µs and a high ‐3 dB cut‐off frequency of 130 kHz. This work demonstrates that fully non‐fused small‐molecule acceptors offer competitive device performance for NIR OPDs compared to fused‐ring electron acceptors, but with reduced synthetic complexity. Furthermore, the study presents an efficient strategy to enhance device performance by varying conformational locks.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110412Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositorio da Universidade da CoruñaArticle . 2024License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adom.202302210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110412Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositorio da Universidade da CoruñaArticle . 2024License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adom.202302210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Spain, Saudi Arabia, United KingdomPublisher:Wiley Funded by:UKRI | Application Targeted and ..., UKRI | Multielectron photoredox ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,UKRI| Multielectron photoredox catalysts based on charge accumulation in conjugated macrocyclesXiantao Hu; Zhuoran Qiao; Davide Nodari; Qiao He; Jesika Asatryan; Martina Rimmele; Zhili Chen; Jaime Martín; Nicola Gasparini; Martin Heeney;handle: 10754/695701 , 10044/1/110412
AbstractTwo fully non‐fused small‐molecule acceptors BTIC‐1 and BTIC‐2 are reported for application in near‐infrared organic photodetectors (NIR OPDs). Both acceptors contain the same conjugated backbone but differing sidechain regiochemistry, affording significant differences in their optical properties. The head‐to‐head arrangement of BTIC‐2 results in a reduction of optical band gap of 0.17 eV compared to BTIC‐1, which contains a head‐to‐tail arrangement, with absorption spanning the visible and near‐IR regions up to 900 nm. These differences are rationalized on the basis of non‐covalent intramolecular interactions facilitating a more co‐planar conformation for BTIC‐2. OPDs based on PM6:BTIC‐2 deliver a low dark current density of 2.4 × 10−7 A cm−2, leading to a superior specific detectivity of 1.7 × 1011 Jones at 828 nm at ‐2 V. The optimized device exhibits an ultrafast photo response of 2.6 µs and a high ‐3 dB cut‐off frequency of 130 kHz. This work demonstrates that fully non‐fused small‐molecule acceptors offer competitive device performance for NIR OPDs compared to fused‐ring electron acceptors, but with reduced synthetic complexity. Furthermore, the study presents an efficient strategy to enhance device performance by varying conformational locks.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110412Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositorio da Universidade da CoruñaArticle . 2024License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adom.202302210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110412Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositorio da Universidade da CoruñaArticle . 2024License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adom.202302210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:American Chemical Society (ACS) Funded by:EC | NANO-TECEC| NANO-TECAuthors: Martín Pérez, Jaime; Nogales, Aurora; Martín-González, Marisol;doi: 10.1021/ma302516e
handle: 10261/78139
We present the simple and controllable fabrication of ordered arrays of poly(3-hexylthiophene) (P3HT) solid nanowires and hollow nanotubes by infiltrating the molten polymer into AAO nanopores at temperatures promoting partial (260 C) and complete (280 C) wetting regimes, respectively. We show that such wetting regimes (and thus the formation of nanowires or nanotubes) are associated with a different internal structure in the P3HT melt. At 260 C, the P3HT organizes into a smectic mesophase. Thus, the translational motion of the P3HT molecule through the phase-separated structure would involve an enthalpic penalty, which prevents the molecular diffusion required for achieving the complete wetting regime. Consequently, the P3HT wets the nanopores in partial wetting regime, so that solid nanowires are formed. In contrast, the melt is structurally isotropic at 280 C, which promotes the complete wetting regime, yielding nanotubes. Such a smectic mesophase is also present in P3HT confined into 350 nm in diameter pores. Furthermore, we observe the formation of a new type of nanostructure consisting of twinned nanotubes (two pores formed from one original pore) as a consequence of the appearance of a longitudinal meniscus which divided the hollow interior of the initial nanotube into two independent compartments. Lastly, we use the capillary rise of the P3HT melt along the cylindrical nanopores as a >coarse> nanoscale viscosimetry experiment for the measurement of its viscosity value under confinement. The physical behavior observed for P3HT might be extrapolated to other semiconducting polymers with similar comblike molecular architectures with applications in optoelectronics, thermoelectrics, and photovoltaics (like other poly(alkylthiophenes), polycarbazoles, polyfluorenes, polyphenylenes, etc.). © 2013 American Chemical Society. ERC 2008 Starting Grant “NanoTEC” number 240497. Spanish Ministry Economy and Competitiveness (Project MAT2008-03232 and MAT2011-23455). Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ma302516e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 23 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ma302516e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:American Chemical Society (ACS) Funded by:EC | NANO-TECEC| NANO-TECAuthors: Martín Pérez, Jaime; Nogales, Aurora; Martín-González, Marisol;doi: 10.1021/ma302516e
handle: 10261/78139
We present the simple and controllable fabrication of ordered arrays of poly(3-hexylthiophene) (P3HT) solid nanowires and hollow nanotubes by infiltrating the molten polymer into AAO nanopores at temperatures promoting partial (260 C) and complete (280 C) wetting regimes, respectively. We show that such wetting regimes (and thus the formation of nanowires or nanotubes) are associated with a different internal structure in the P3HT melt. At 260 C, the P3HT organizes into a smectic mesophase. Thus, the translational motion of the P3HT molecule through the phase-separated structure would involve an enthalpic penalty, which prevents the molecular diffusion required for achieving the complete wetting regime. Consequently, the P3HT wets the nanopores in partial wetting regime, so that solid nanowires are formed. In contrast, the melt is structurally isotropic at 280 C, which promotes the complete wetting regime, yielding nanotubes. Such a smectic mesophase is also present in P3HT confined into 350 nm in diameter pores. Furthermore, we observe the formation of a new type of nanostructure consisting of twinned nanotubes (two pores formed from one original pore) as a consequence of the appearance of a longitudinal meniscus which divided the hollow interior of the initial nanotube into two independent compartments. Lastly, we use the capillary rise of the P3HT melt along the cylindrical nanopores as a >coarse> nanoscale viscosimetry experiment for the measurement of its viscosity value under confinement. The physical behavior observed for P3HT might be extrapolated to other semiconducting polymers with similar comblike molecular architectures with applications in optoelectronics, thermoelectrics, and photovoltaics (like other poly(alkylthiophenes), polycarbazoles, polyfluorenes, polyphenylenes, etc.). © 2013 American Chemical Society. ERC 2008 Starting Grant “NanoTEC” number 240497. Spanish Ministry Economy and Competitiveness (Project MAT2008-03232 and MAT2011-23455). Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ma302516e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 23 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ma302516e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | NANO-TECEC| NANO-TECAuthors: Marisol Martín-González; Olga Caballero-Calero; José F. Fernández; Jaime Martín; +1 AuthorsMarisol Martín-González; Olga Caballero-Calero; José F. Fernández; Jaime Martín; Jaime Martín;Three-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures. Here we report the simple fabrication of a template based on anodic aluminium oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100-nm range. The 3D templates are then employed to achieve 3D, ordered nanowire networks in Bi2Te3 and polystyrene. Finally, we demonstrate the photonic crystal behaviour of both the template and the polystyrene 3D nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals and semiconductors.
Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 41visibility views 41 download downloads 56 Powered bymore_vert Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | NANO-TECEC| NANO-TECAuthors: Marisol Martín-González; Olga Caballero-Calero; José F. Fernández; Jaime Martín; +1 AuthorsMarisol Martín-González; Olga Caballero-Calero; José F. Fernández; Jaime Martín; Jaime Martín;Three-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures. Here we report the simple fabrication of a template based on anodic aluminium oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100-nm range. The 3D templates are then employed to achieve 3D, ordered nanowire networks in Bi2Te3 and polystyrene. Finally, we demonstrate the photonic crystal behaviour of both the template and the polystyrene 3D nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals and semiconductors.
Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 41visibility views 41 download downloads 56 Powered bymore_vert Nature Communication... arrow_drop_down Nature CommunicationsArticle . 2014 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Saudi Arabia, Spain, Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | CAPaCITy, UKRI | Application Targeted and ...EC| CAPaCITy ,UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarDing, Bowen; Jo, Il-Young; Yu, Hang; Kim, Ji Hwan; Marsh, Adam V.; Gutiérrez-Fernández, Edgar; Ramos, Nicolás; Rapley, Charlotte L.; Rimmele, Martina; He, Qiao; Martín, Jaime; Gasparini, Nicola; Nelson, Jenny; Yoon, Myung-Han; Heeney, Martin;Emergent bioelectronic technologies are underpinned by the organic electrochemical transistor (OECT), which employs an electrolyte medium to modulate the conductivity of its organic semiconductor channel. Here we utilize postpolymerization modification (PPM) on a conjugated polymer backbone to directly introduce glycolated or anionic side chains via fluoride displacement. The resulting polymers demonstrated increased volumetric capacitances, with subdued swelling, compared to their parent polymer in p-type enhancement mode OECTs. This increase in capacitance was attributed to their modified side chain configurations enabling cationic charge compensation for thin film electrochemical oxidation, as deduced from electrochemical quartz crystal microbalance measurements. An overall improvement in OECT performance was recorded for the hybrid glycol/ionic polymer compared to the parent, owing to its low swelling and bimodal crystalline orientation as imaged by grazing-incidence wide-angle X-ray scattering, enabling its high charge mobility at 1.02 cm2·V-1·s-1. Compromised device performance was recorded for the fully glycolated derivative compared to the parent, which was linked to its limited face-on stacking, which hindered OECT charge mobility at 0.26 cm2·V-1·s-1, despite its high capacitance. These results highlight the effectiveness of anionic side chain attachment by PPM as a means of increasing the volumetric capacitance of p-type conjugated polymers for OECTs, while retaining solid-state macromolecular properties that facilitate hole transport.
Chemistry of Materia... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110431Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c00327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemistry of Materia... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110431Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c00327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Saudi Arabia, Spain, Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | CAPaCITy, UKRI | Application Targeted and ...EC| CAPaCITy ,UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarDing, Bowen; Jo, Il-Young; Yu, Hang; Kim, Ji Hwan; Marsh, Adam V.; Gutiérrez-Fernández, Edgar; Ramos, Nicolás; Rapley, Charlotte L.; Rimmele, Martina; He, Qiao; Martín, Jaime; Gasparini, Nicola; Nelson, Jenny; Yoon, Myung-Han; Heeney, Martin;Emergent bioelectronic technologies are underpinned by the organic electrochemical transistor (OECT), which employs an electrolyte medium to modulate the conductivity of its organic semiconductor channel. Here we utilize postpolymerization modification (PPM) on a conjugated polymer backbone to directly introduce glycolated or anionic side chains via fluoride displacement. The resulting polymers demonstrated increased volumetric capacitances, with subdued swelling, compared to their parent polymer in p-type enhancement mode OECTs. This increase in capacitance was attributed to their modified side chain configurations enabling cationic charge compensation for thin film electrochemical oxidation, as deduced from electrochemical quartz crystal microbalance measurements. An overall improvement in OECT performance was recorded for the hybrid glycol/ionic polymer compared to the parent, owing to its low swelling and bimodal crystalline orientation as imaged by grazing-incidence wide-angle X-ray scattering, enabling its high charge mobility at 1.02 cm2·V-1·s-1. Compromised device performance was recorded for the fully glycolated derivative compared to the parent, which was linked to its limited face-on stacking, which hindered OECT charge mobility at 0.26 cm2·V-1·s-1, despite its high capacitance. These results highlight the effectiveness of anionic side chain attachment by PPM as a means of increasing the volumetric capacitance of p-type conjugated polymers for OECTs, while retaining solid-state macromolecular properties that facilitate hole transport.
Chemistry of Materia... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110431Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c00327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemistry of Materia... arrow_drop_down Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110431Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.chemmater.3c00327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, France, SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NANO-TECEC| NANO-TECMiguel Muñoz Rojo; Jaime Martín; Stéphane Grauby; Theodorian Borca-Tasciuc; Stefan Dilhaire; Marisol Martin-Gonzalez;Thermal conductivity reduction is observed in P3HT nanowires inside porous alumina, upon size confinement due to a change in crystal orientation.
Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014License: CC BY SAData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1039/c4nr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4nr00107a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 38visibility views 38 download downloads 87 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014License: CC BY SAData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1039/c4nr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4nr00107a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, France, SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NANO-TECEC| NANO-TECMiguel Muñoz Rojo; Jaime Martín; Stéphane Grauby; Theodorian Borca-Tasciuc; Stefan Dilhaire; Marisol Martin-Gonzalez;Thermal conductivity reduction is observed in P3HT nanowires inside porous alumina, upon size confinement due to a change in crystal orientation.
Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014License: CC BY SAData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1039/c4nr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4nr00107a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 38visibility views 38 download downloads 87 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014License: CC BY SAData sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1039/c4nr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4nr00107a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:IOP Publishing Funded by:EC | NANO-TECEC| NANO-TECAuthors: Martín Pérez, Jaime; Martín-González, Marisol; Campo, Ángel Adolfo del; Jiménez Reinosa, Julián; +1 AuthorsMartín Pérez, Jaime; Martín-González, Marisol; Campo, Ángel Adolfo del; Jiménez Reinosa, Julián; Fernández Lozano, José Francisco;We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm(2). The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm(2). The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130-140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm(2)-scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array.
Nanotechnology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/23/38/385305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 125 Powered bymore_vert Nanotechnology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/23/38/385305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:IOP Publishing Funded by:EC | NANO-TECEC| NANO-TECAuthors: Martín Pérez, Jaime; Martín-González, Marisol; Campo, Ángel Adolfo del; Jiménez Reinosa, Julián; +1 AuthorsMartín Pérez, Jaime; Martín-González, Marisol; Campo, Ángel Adolfo del; Jiménez Reinosa, Julián; Fernández Lozano, José Francisco;We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm(2). The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm(2). The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130-140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm(2)-scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array.
Nanotechnology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/23/38/385305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 46visibility views 46 download downloads 125 Powered bymore_vert Nanotechnology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/23/38/385305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United Kingdom, Spain, SpainPublisher:Wiley Funded by:UKRI | Application Targeted and ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarBowen Ding; Gunwoo Kim; Youngseok Kim; Flurin D. Eisner; Edgar Gutiérrez‐Fernández; Jaime Martín; Myung‐Han Yoon; Martin Heeney;AbstractTwo new glycolated semiconducting polymers PgBT(F)2gT and PgBT(F)2gTT of differing backbone curvatures were designed and synthesised for application as p‐type accumulation mode organic electrochemical transistor (OECT) materials. Both polymers demonstrated stable and reversible oxidation, accessible within the aqueous electrochemical window, to generate polaronic charge carriers. OECTs fabricated from PgBT(F)2gT featuring a curved backbone geometry attained a higher volumetric capacitance of 170 F cm−3. However, PgBT(F)2gTT with a linear backbone displayed overall superior OECT performance with a normalised peak transconductance of 3.00×104 mS cm−1, owing to its enhanced order, expediting the charge mobility to 0.931 cm2 V−1 s−1.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94051Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93458Data sources: Bielefeld Academic Search Engine (BASE)Angewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202106084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94051Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93458Data sources: Bielefeld Academic Search Engine (BASE)Angewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202106084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United Kingdom, Spain, SpainPublisher:Wiley Funded by:UKRI | Application Targeted and ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarBowen Ding; Gunwoo Kim; Youngseok Kim; Flurin D. Eisner; Edgar Gutiérrez‐Fernández; Jaime Martín; Myung‐Han Yoon; Martin Heeney;AbstractTwo new glycolated semiconducting polymers PgBT(F)2gT and PgBT(F)2gTT of differing backbone curvatures were designed and synthesised for application as p‐type accumulation mode organic electrochemical transistor (OECT) materials. Both polymers demonstrated stable and reversible oxidation, accessible within the aqueous electrochemical window, to generate polaronic charge carriers. OECTs fabricated from PgBT(F)2gT featuring a curved backbone geometry attained a higher volumetric capacitance of 170 F cm−3. However, PgBT(F)2gTT with a linear backbone displayed overall superior OECT performance with a normalised peak transconductance of 3.00×104 mS cm−1, owing to its enhanced order, expediting the charge mobility to 0.931 cm2 V−1 s−1.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94051Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93458Data sources: Bielefeld Academic Search Engine (BASE)Angewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202106084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94051Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93458Data sources: Bielefeld Academic Search Engine (BASE)Angewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositorySpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepositorio da Universidade da CoruñaArticle . 2021License: CC BYData sources: Repositorio da Universidade da CoruñaARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2021Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/anie.202106084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Funded by:EC | NANO-TECEC| NANO-TECAuthors: Jaime Martín; Cristina V. Manzano; Marisol Martín-González;handle: 10261/51366
The growth of self-ordered anodic aluminum oxide (AAO) templates with pore diameters in the 140-400 nm range is achieved by anodization in phosphoric acid at low temperatures (-4 °C). The procedure used in this study is able to completely avoid the >burning> of the oxide, highly frequent in anodizations in phosphoric acid solutions at high voltages. The current density measured during the anodizations is rather low, 0.6-0.7 mA/cm2; therefore, low growth rates have been also measured (<2 μm/h). AAO templates present a relatively low porosity value of 8.4%. However, a considerable pore-enlargement-rate (vΔd = 0.636 ± 0.101 nm/h) has been observed as a consequence of the chemical dissolution of the pore walls during the anodization. Thus, the results reported here constitute an exhaustive study on the preparation of large-diameter-pore self-ordered AAO templates that enables both to access to pore diameters up to now inaccessible and to efficiently overcome the difficulties of their fabrication process ascribed to its aggressive reaction conditions. © 2011 Elsevier Inc. All rights reserved. Authors want to thank the ERC 2008 Starting Grant number 240497 for financial support. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMicroporous and Mesoporous MaterialsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.mi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2011.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 49visibility views 49 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMicroporous and Mesoporous MaterialsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.mi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2011.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Funded by:EC | NANO-TECEC| NANO-TECAuthors: Jaime Martín; Cristina V. Manzano; Marisol Martín-González;handle: 10261/51366
The growth of self-ordered anodic aluminum oxide (AAO) templates with pore diameters in the 140-400 nm range is achieved by anodization in phosphoric acid at low temperatures (-4 °C). The procedure used in this study is able to completely avoid the >burning> of the oxide, highly frequent in anodizations in phosphoric acid solutions at high voltages. The current density measured during the anodizations is rather low, 0.6-0.7 mA/cm2; therefore, low growth rates have been also measured (<2 μm/h). AAO templates present a relatively low porosity value of 8.4%. However, a considerable pore-enlargement-rate (vΔd = 0.636 ± 0.101 nm/h) has been observed as a consequence of the chemical dissolution of the pore walls during the anodization. Thus, the results reported here constitute an exhaustive study on the preparation of large-diameter-pore self-ordered AAO templates that enables both to access to pore diameters up to now inaccessible and to efficiently overcome the difficulties of their fabrication process ascribed to its aggressive reaction conditions. © 2011 Elsevier Inc. All rights reserved. Authors want to thank the ERC 2008 Starting Grant number 240497 for financial support. Peer Reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMicroporous and Mesoporous MaterialsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.mi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2011.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 49visibility views 49 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMicroporous and Mesoporous MaterialsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.mi...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.micromeso.2011.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, Saudi Arabia, Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Application Targeted and ..., UKRI | Multielectron photoredox ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,UKRI| Multielectron photoredox catalysts based on charge accumulation in conjugated macrocyclesFilip Aniés; Francesco Furlan; Zhuoran Qiao; Valentina Pirela; Matthew Bidwell; Martina Rimmele; Jaime Martín; Nicola Gasparini; Martin Heeney;doi: 10.1039/d2tc05018h
handle: 10754/690110
Unveiling the impact of different structural isomers of carborane-containing non-fullerene acceptors on optoelectronic properties and organic photovoltaic performance.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYFull-Text: http://xlink.rsc.org/?DOI=D2TC05018HData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry CArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2tc05018h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYFull-Text: http://xlink.rsc.org/?DOI=D2TC05018HData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry CArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2tc05018h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Spain, Saudi Arabia, Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Application Targeted and ..., UKRI | Multielectron photoredox ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,UKRI| Multielectron photoredox catalysts based on charge accumulation in conjugated macrocyclesFilip Aniés; Francesco Furlan; Zhuoran Qiao; Valentina Pirela; Matthew Bidwell; Martina Rimmele; Jaime Martín; Nicola Gasparini; Martin Heeney;doi: 10.1039/d2tc05018h
handle: 10754/690110
Unveiling the impact of different structural isomers of carborane-containing non-fullerene acceptors on optoelectronic properties and organic photovoltaic performance.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYFull-Text: http://xlink.rsc.org/?DOI=D2TC05018HData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry CArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2tc05018h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYFull-Text: http://xlink.rsc.org/?DOI=D2TC05018HData sources: Bielefeld Academic Search Engine (BASE)Journal of Materials Chemistry CArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2023License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2tc05018h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NANO-TECEC| NANO-TECJaime Martín; Mariano Campoy-Quiles; Aurora Nogales; Miquel Garriga; M. Isabel Alonso; Alejandro R. Goñi; Marisol Martín-González;We study the structure of poly(3-hexylthiophene) (P3HT) subjected to nanoscale confinement in two dimensions (2D) as imposed by the rigid walls of nanopore anodic aluminum oxide (AAO) templates. P3HT nanowires with aspect ratios (length-to-diameter) above 1000 and diameters ranging between 15 nm and 350 nm are produced in the pores of the AAO templates via two processing routes. These are, namely, drying a solution or cooling from the melt. Our study focuses on the effects of nanoconfinement on the semicrystalline nature of the nanowires, the orientation of crystals, and the evolution of the structures that P3HT might develop under confinement, which we investigate by combining imaging (SEM), spectroscopic (FTIR, photoluminescence) and structural characterization (WAXS, DSC) techniques. Solution-processed P3HT nanowires are essentially amorphous and porous, whereas melt-processed nanowires are semicrystalline, and present a more compact morphology and smoother surfaces. In the latter case, the orientation of crystals was found to strongly depend on the pore diameter. In large diameter nanowires (250 nm and 120 nm), crystals are oriented laying the π-π stacking direction parallel to the nanowire axis. In contrast, in small diameter nanowires, the π-π stacking direction is mainly perpendicular to the nanowires, as crystals are likely to nucleate at pore walls. The structural evolution of P3HT upon heating into weakly (250 nm in diameter) and strongly (15 nm in diameter) confining pores has been studied. A complex set of structures is observed, i.e., crystals, a solid layered mesophase, a nematic/smectic mesophase, and the isotropic melt. Interestingly, a rare crystal polymorph (form II) is also observed under strong confinement conditions together with the usual lamellar crystal form I. Furthermore, we show that nanoconfinement stabilizes form II: such crystals are still present at 210 °C while in the bulk they get converted to form I crystals at around 50 °C.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/c3sm...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3sm52378k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/c3sm...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3sm52378k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Royal Society of Chemistry (RSC) Funded by:EC | NANO-TECEC| NANO-TECJaime Martín; Mariano Campoy-Quiles; Aurora Nogales; Miquel Garriga; M. Isabel Alonso; Alejandro R. Goñi; Marisol Martín-González;We study the structure of poly(3-hexylthiophene) (P3HT) subjected to nanoscale confinement in two dimensions (2D) as imposed by the rigid walls of nanopore anodic aluminum oxide (AAO) templates. P3HT nanowires with aspect ratios (length-to-diameter) above 1000 and diameters ranging between 15 nm and 350 nm are produced in the pores of the AAO templates via two processing routes. These are, namely, drying a solution or cooling from the melt. Our study focuses on the effects of nanoconfinement on the semicrystalline nature of the nanowires, the orientation of crystals, and the evolution of the structures that P3HT might develop under confinement, which we investigate by combining imaging (SEM), spectroscopic (FTIR, photoluminescence) and structural characterization (WAXS, DSC) techniques. Solution-processed P3HT nanowires are essentially amorphous and porous, whereas melt-processed nanowires are semicrystalline, and present a more compact morphology and smoother surfaces. In the latter case, the orientation of crystals was found to strongly depend on the pore diameter. In large diameter nanowires (250 nm and 120 nm), crystals are oriented laying the π-π stacking direction parallel to the nanowire axis. In contrast, in small diameter nanowires, the π-π stacking direction is mainly perpendicular to the nanowires, as crystals are likely to nucleate at pore walls. The structural evolution of P3HT upon heating into weakly (250 nm in diameter) and strongly (15 nm in diameter) confining pores has been studied. A complex set of structures is observed, i.e., crystals, a solid layered mesophase, a nematic/smectic mesophase, and the isotropic melt. Interestingly, a rare crystal polymorph (form II) is also observed under strong confinement conditions together with the usual lamellar crystal form I. Furthermore, we show that nanoconfinement stabilizes form II: such crystals are still present at 210 °C while in the bulk they get converted to form I crystals at around 50 °C.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/c3sm...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3sm52378k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 31 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAhttp://dx.doi.org/10.1039/c3sm...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3sm52378k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Spain, Saudi Arabia, United KingdomPublisher:Wiley Funded by:UKRI | Application Targeted and ..., UKRI | Multielectron photoredox ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,UKRI| Multielectron photoredox catalysts based on charge accumulation in conjugated macrocyclesXiantao Hu; Zhuoran Qiao; Davide Nodari; Qiao He; Jesika Asatryan; Martina Rimmele; Zhili Chen; Jaime Martín; Nicola Gasparini; Martin Heeney;handle: 10754/695701 , 10044/1/110412
AbstractTwo fully non‐fused small‐molecule acceptors BTIC‐1 and BTIC‐2 are reported for application in near‐infrared organic photodetectors (NIR OPDs). Both acceptors contain the same conjugated backbone but differing sidechain regiochemistry, affording significant differences in their optical properties. The head‐to‐head arrangement of BTIC‐2 results in a reduction of optical band gap of 0.17 eV compared to BTIC‐1, which contains a head‐to‐tail arrangement, with absorption spanning the visible and near‐IR regions up to 900 nm. These differences are rationalized on the basis of non‐covalent intramolecular interactions facilitating a more co‐planar conformation for BTIC‐2. OPDs based on PM6:BTIC‐2 deliver a low dark current density of 2.4 × 10−7 A cm−2, leading to a superior specific detectivity of 1.7 × 1011 Jones at 828 nm at ‐2 V. The optimized device exhibits an ultrafast photo response of 2.6 µs and a high ‐3 dB cut‐off frequency of 130 kHz. This work demonstrates that fully non‐fused small‐molecule acceptors offer competitive device performance for NIR OPDs compared to fused‐ring electron acceptors, but with reduced synthetic complexity. Furthermore, the study presents an efficient strategy to enhance device performance by varying conformational locks.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110412Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositorio da Universidade da CoruñaArticle . 2024License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adom.202302210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110412Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositorio da Universidade da CoruñaArticle . 2024License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adom.202302210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Spain, Saudi Arabia, United KingdomPublisher:Wiley Funded by:UKRI | Application Targeted and ..., UKRI | Multielectron photoredox ...UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar ,UKRI| Multielectron photoredox catalysts based on charge accumulation in conjugated macrocyclesXiantao Hu; Zhuoran Qiao; Davide Nodari; Qiao He; Jesika Asatryan; Martina Rimmele; Zhili Chen; Jaime Martín; Nicola Gasparini; Martin Heeney;handle: 10754/695701 , 10044/1/110412
AbstractTwo fully non‐fused small‐molecule acceptors BTIC‐1 and BTIC‐2 are reported for application in near‐infrared organic photodetectors (NIR OPDs). Both acceptors contain the same conjugated backbone but differing sidechain regiochemistry, affording significant differences in their optical properties. The head‐to‐head arrangement of BTIC‐2 results in a reduction of optical band gap of 0.17 eV compared to BTIC‐1, which contains a head‐to‐tail arrangement, with absorption spanning the visible and near‐IR regions up to 900 nm. These differences are rationalized on the basis of non‐covalent intramolecular interactions facilitating a more co‐planar conformation for BTIC‐2. OPDs based on PM6:BTIC‐2 deliver a low dark current density of 2.4 × 10−7 A cm−2, leading to a superior specific detectivity of 1.7 × 1011 Jones at 828 nm at ‐2 V. The optimized device exhibits an ultrafast photo response of 2.6 µs and a high ‐3 dB cut‐off frequency of 130 kHz. This work demonstrates that fully non‐fused small‐molecule acceptors offer competitive device performance for NIR OPDs compared to fused‐ring electron acceptors, but with reduced synthetic complexity. Furthermore, the study presents an efficient strategy to enhance device performance by varying conformational locks.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110412Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositorio da Universidade da CoruñaArticle . 2024License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adom.202302210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10044/1/110412Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Repositorio da Universidade da CoruñaArticle . 2024License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adom.202302210&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu