- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2011 NetherlandsPublisher:Elsevier BV Authors: Harmsen, R.; Eichhammer, W.; Wesselink, B.;Europe’s 2020 greenhouse gas (GHG) reduction target consists of two sub-targets: one for the Emissions Trading Scheme (ETS) sectors and one for the non-ETS sectors. The non-ETS target covers CO2 emissions in buildings, transport and non-ETS industry and non-CO2 GHG emissions. The non-ETS target is known as Europe’s Effort Sharing Decision. This article discusses the GDP per capita method the European Commission has applied in setting Member State specific targets for the non-ETS (‘‘the effort sharing’’) and shows that it results in an imbalanced reduction effort among the Member States. It turns out that the principal mechanism of the GDP per capita method (low-GDP countries get room to catch up with high-GDP countries by allowing them to increase emissions) is obscured by the non-CO2 GHGs, the baseline projections of which are highly policy-induced and not correlated with the growth of GDP per capita. We propose an alternative method that (1) corrects for the policy-induced decrease of non-CO2 GHG emissions and (2) is based on energy savings potentials. This approach could be used in future target setting for non-ETS sectors – including in the case that the overarching EU-wide target would be strengthened – and would provide a direct support to Europe’s energy savings ambitions and policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Authors: Abeelen, Christiaan; Harmsen, Robert; Worrell, Ernst;As potentials for energy savings are huge, industry can provide a major contribution to energy savings goals. This paper focuses on the energy savings realized under the Dutch voluntary agreements in the period 2001-2011. Participants in these schemes are obliged to plan and implement all measures with a payback period of less than 5 years. This paper shows how many of these projects have been implemented and how much savings they generate. Our findings show that large differences exist in the realized savings between individual companies. There is however no significant difference in savings observed between companies that participate in the Emission Trading System (ETS) and companies that do not. Although it is impossible to disentangle the drivers behind the implementation of these projects, the amount of savings suggest that at least part of them was implemented because of different energy policy instruments. © 2013 Elsevier Ltd.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NetherlandsPublisher:Elsevier BV Authors: Harmsen, R.; Wesselink, B.; Eichhammer, W.; Worrell, E.;We show that renewable energy contributes to Europe's 2020 primary energy savings target. This contribution, which is to a large extent still unknown and not recognized by policy makers, results from the way renewable energy is dealt with in Europe's energy statistics. We discuss the policy consequences and argue that the ‘energy savings’ occurring from the accounting of renewable energy should not distract attention from demand-side energy savings in sectors such as transport, industry and the built environment. The consequence of such a distraction could be that many of the benefits from demand-side energy savings, for example lower energy bills, increase of the renewable energy share in energy consumption without investing in new renewable capacity, and long-term climate targets to reduce greenhouse gas emissions by more than 80%, will be missed. Such distraction is not hypothetical since Europe's 2020 renewable energy target is binding whereas the 2020 primary energy savings target is only indicative.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Abeelen, C.J.; Harmsen, R.; Worrell, E.;Companies participating in the Dutch voluntary agreements on energy efficiency are required to announce the energy-saving projects that they have planned for a specified reporting period in an Energy Efficiency Plan (EEP). All projects with a payback period less than 5 years should be implemented. The aim of this paper is to provide insight into the differences in planning and implementation of energy efficiency investments by companies. This analysis is based on the EEPs submitted in the period 2009-2012. By comparing the characteristics of projects that have been implemented with those that were planned, insight is gained in the adjustments that companies make in their energy efficiency investment plans. We look at external circumstances that could explain these adjustments. Our results show that over 12,000 projects have been planned by the 904 long-term agreement (LTA) participants, about half of which are planned 'certain', which means that companies are certain that these projects will be implemented. However, we find a large difference between the planned and realised savings of companies and a huge variation in the payback period of both planned and implemented projects. We do not find a correlation between implementation rate and payback period. This suggests that the payback period in the EEPs was not assessed properly or that other than economic motives are more decisive for investment decisions. Our results can be used to improve the effectiveness and efficiency of voluntary agreements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9355-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9355-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Wina Crijns-Graus; Ernst Worrell; Robert Harmsen; Jing Hu;Abstract To effectively mitigate climate change, variable renewable electricity (VRE) is expected to substitute a great share of current fossil-fired electricity generation. However, VRE investments can be obstructed by many barriers, endangering the amount of investments needed in order to be consistent with the Paris 2 °C target. To help policy-makers better understand and assess these barriers, an integrated framework was developed. It establishes a clear connection between barriers identified in literature and the investment decision-making process, based on the project life of VRE assets. Barriers in this framework are defined as factors hindering the realization of a positive final investment decision (FID), which can lead to investment withdrawal. Based on this research, we argue that addressing so-called “symptomatic” barriers alone is hardly effective when the “fundamental” barriers remain untouched. It also demonstrates that monetary and fiscal policies can have side-effects on VRE investments. We suggest that a comprehensive policy framework to support VRE should not be solely limited to the narrow context of climate and energy policy, and the electricity market. It should be incorporated in a broader context including monetary and fiscal policies. When re-designing these macroeconomic policies, their potential negative impacts on VRE investments should be considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Alco Kieft; Robert Harmsen; Marko P. Hekkert;This paper analyzes the logics that underlie two distinct approaches to energy-efficiency retrofits in the Netherlands. It is explained how these logics lead to differing viewpoints on problems and solutions on the road to scale-up of such retrofits. For this, the paper makes use of the institutional logics approach. The institutional logics approach can be used to understand the reasoning that lies behind material practices and is here applied to two renovation approaches. Institutional logics theory can also explain why actors focus their attention on certain problems and solutions, namely, they focus on the ones consistent with the institutional logics that guide them. The thorough understanding of the empirical domain hereby achieved facilitates the policy formulation process and helps to set suitable system boundaries within frameworks for analyzing technological change processes.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnergy Research & Social ScienceArticle . 2020License: CC BY NC NDData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnergy Research & Social ScienceArticle . 2020License: CC BY NC NDData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Elsevier BV Authors: Harmsen, Robert; Crijns-Graus, Wina;In many countries the role of combined heat & power (CHP) generation in the power & heat sector is significant. However, in decomposition analyses of the power & heat sector the contribution of CHP to observed changes in primary energy use or CO2 emissions is generally not made explicit. In this paper, the contribution of CHP is shown for eight countries (China, Denmark, France, Germany, Italy, the Netherlands, Poland and the USA) in the period 2005–2016. In addition, an alternative method is proposed for power & heat sector decomposition analysis with five driving factors: volume effect, subsector effect, heat effect, fuel mix effect and efficiency effect. This method combines indicators from existing decomposition methods and complements them with a CHP specific heat effect. The proposed method provides improved insight in the factors driving change in primary energy use or CO2 emissions in the power and heat sector, especially in case changes take place regarding either 1) the power-to-heat ratio, 2) the share of CHP electricity in total electricity production, 3) the CHP fuel mix, and/or 4) the efficiency of individual CHP fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Elsevier BV Authors: Hu, J.; Harmsen, R.; Crijns-Graus, Wina;Decentralized generation is often connected to the distribution grid and consumed by end-users in geographical proximity. Compared to large centralized power plants supplying electricity that flows down the voltage chain in a top-down manner, decentralized generation can avoid grid losses and save primary energy (PE). This paper developed and demonstrated a generic method to account for avoided grid losses and PE savings from decentralized generation, using the EU as the case-region. The method can serve as an easy tool to support the discussion and decision-making process regarding a technology choice between centralized and decentralized generation. Based on this method, we estimated that for each MWh of electricity produced from decentralized generation in the EU, it saves 0.136-0.350 MWh PE under on-site generation mode and 0.103-0.286 MWh PE under off-site generation mode due to avoided grid losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.11.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.11.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Lars J Nilsson; Mirjam Harmelink; Robert Harmsen;Realizing a 20% energy efficiency improvement in Europe by 2020 requires the introduction of good new energy efficiency policies as well as strengthening and enforcing the existing policies. This raises the question: what characterizes good and effective energy efficiency policies and their implementation? Systematic ex post evaluation of energy efficiency policies can reveal factors determining not only what works and what does not but also explain why. Ex post evaluation of 20 energy efficiency policy instruments applied across different sectors and countries in Europe among others showed that ex post evaluation does not yet have a high priority among policy makers: Often, quantitative targets and clear timeframes are lacking, and monitoring information is not collected on a regular basis. Our analysis, however, did reveal some general factors in the process of design and implementation of policy instruments that appear as important including (1) existence of clear goals and a mandate for the implementing organization, (2) the ability to balance and combine flexibility and continuity, (3) the involvement of stakeholders, and (4) the ability to adapt to and integrate adjacent policies or develop consistent policy packages. The analysis was performed using a uniform methodology called "theory-based policy evaluation". The general principle behind this approach is that a likely theory is drawn up on the program's various steps of logic of intervention to achieve its targeted impact in terms of energy efficiency improvement. The approach has several benefits over other ex post evaluation methods because (1) the whole policy implementation process is evaluated and the focus is not just on the final impacts, (2) through the development of indicators for each step in the implementation process, the "successes and failures" can be determined to the greatest extent possible, and (3) by applying this approach, we not only learn whether policies are successful or not but also why they succeeded or failed and how they can be improved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-008-9007-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-008-9007-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Authors: Mandley, S.; Harmsen, R.; Worrell, E.; Harmsen, Robert;The EU building sector is widely acknowledged as a primary source of anthropogenic emissions, contributing directly to climate change. Recent studies estimate the sector to account for approximately 40% of primary energy use and 50% of extracted materials within the European Union. The Energy Performance of Buildings Directive 2010/31/EU requires efficiency improvements to be implemented in all new EU buildings, with a requirement that from 2020 all new buildings constructed should be "nearly energy zero". From this stance the embodied energy of a building, when taking a full life-cycle perspective, is gaining importance and will become a more dominant issue to tackle when striving for sector-wide reduction in the coming years. This research took the UK as a case study and investigated where reduction measures are most suited to reduce material and energy consumption. The study proposes four reduction measures strategically focusing on hotspots of excessive consumption. The findings demonstrate that significant reductions can be achieved for the UK building sector's annual material and embodied energy consumption in the short to midterm, with projections estimating resource and embodied energy savings respectively of 4.7% and 6.4% by 2020 and 9.3% and 28.6% by 2030.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.10.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.10.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 NetherlandsPublisher:Elsevier BV Authors: Harmsen, R.; Eichhammer, W.; Wesselink, B.;Europe’s 2020 greenhouse gas (GHG) reduction target consists of two sub-targets: one for the Emissions Trading Scheme (ETS) sectors and one for the non-ETS sectors. The non-ETS target covers CO2 emissions in buildings, transport and non-ETS industry and non-CO2 GHG emissions. The non-ETS target is known as Europe’s Effort Sharing Decision. This article discusses the GDP per capita method the European Commission has applied in setting Member State specific targets for the non-ETS (‘‘the effort sharing’’) and shows that it results in an imbalanced reduction effort among the Member States. It turns out that the principal mechanism of the GDP per capita method (low-GDP countries get room to catch up with high-GDP countries by allowing them to increase emissions) is obscured by the non-CO2 GHGs, the baseline projections of which are highly policy-induced and not correlated with the growth of GDP per capita. We propose an alternative method that (1) corrects for the policy-induced decrease of non-CO2 GHG emissions and (2) is based on energy savings potentials. This approach could be used in future target setting for non-ETS sectors – including in the case that the overarching EU-wide target would be strengthened – and would provide a direct support to Europe’s energy savings ambitions and policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.08.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Authors: Abeelen, Christiaan; Harmsen, Robert; Worrell, Ernst;As potentials for energy savings are huge, industry can provide a major contribution to energy savings goals. This paper focuses on the energy savings realized under the Dutch voluntary agreements in the period 2001-2011. Participants in these schemes are obliged to plan and implement all measures with a payback period of less than 5 years. This paper shows how many of these projects have been implemented and how much savings they generate. Our findings show that large differences exist in the realized savings between individual companies. There is however no significant difference in savings observed between companies that participate in the Emission Trading System (ETS) and companies that do not. Although it is impossible to disentangle the drivers behind the implementation of these projects, the amount of savings suggest that at least part of them was implemented because of different energy policy instruments. © 2013 Elsevier Ltd.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NetherlandsPublisher:Elsevier BV Authors: Harmsen, R.; Wesselink, B.; Eichhammer, W.; Worrell, E.;We show that renewable energy contributes to Europe's 2020 primary energy savings target. This contribution, which is to a large extent still unknown and not recognized by policy makers, results from the way renewable energy is dealt with in Europe's energy statistics. We discuss the policy consequences and argue that the ‘energy savings’ occurring from the accounting of renewable energy should not distract attention from demand-side energy savings in sectors such as transport, industry and the built environment. The consequence of such a distraction could be that many of the benefits from demand-side energy savings, for example lower energy bills, increase of the renewable energy share in energy consumption without investing in new renewable capacity, and long-term climate targets to reduce greenhouse gas emissions by more than 80%, will be missed. Such distraction is not hypothetical since Europe's 2020 renewable energy target is binding whereas the 2020 primary energy savings target is only indicative.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Abeelen, C.J.; Harmsen, R.; Worrell, E.;Companies participating in the Dutch voluntary agreements on energy efficiency are required to announce the energy-saving projects that they have planned for a specified reporting period in an Energy Efficiency Plan (EEP). All projects with a payback period less than 5 years should be implemented. The aim of this paper is to provide insight into the differences in planning and implementation of energy efficiency investments by companies. This analysis is based on the EEPs submitted in the period 2009-2012. By comparing the characteristics of projects that have been implemented with those that were planned, insight is gained in the adjustments that companies make in their energy efficiency investment plans. We look at external circumstances that could explain these adjustments. Our results show that over 12,000 projects have been planned by the 904 long-term agreement (LTA) participants, about half of which are planned 'certain', which means that companies are certain that these projects will be implemented. However, we find a large difference between the planned and realised savings of companies and a huge variation in the payback period of both planned and implemented projects. We do not find a correlation between implementation rate and payback period. This suggests that the payback period in the EEPs was not assessed properly or that other than economic motives are more decisive for investment decisions. Our results can be used to improve the effectiveness and efficiency of voluntary agreements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9355-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-015-9355-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Wina Crijns-Graus; Ernst Worrell; Robert Harmsen; Jing Hu;Abstract To effectively mitigate climate change, variable renewable electricity (VRE) is expected to substitute a great share of current fossil-fired electricity generation. However, VRE investments can be obstructed by many barriers, endangering the amount of investments needed in order to be consistent with the Paris 2 °C target. To help policy-makers better understand and assess these barriers, an integrated framework was developed. It establishes a clear connection between barriers identified in literature and the investment decision-making process, based on the project life of VRE assets. Barriers in this framework are defined as factors hindering the realization of a positive final investment decision (FID), which can lead to investment withdrawal. Based on this research, we argue that addressing so-called “symptomatic” barriers alone is hardly effective when the “fundamental” barriers remain untouched. It also demonstrates that monetary and fiscal policies can have side-effects on VRE investments. We suggest that a comprehensive policy framework to support VRE should not be solely limited to the narrow context of climate and energy policy, and the electricity market. It should be incorporated in a broader context including monetary and fiscal policies. When re-designing these macroeconomic policies, their potential negative impacts on VRE investments should be considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Authors: Alco Kieft; Robert Harmsen; Marko P. Hekkert;This paper analyzes the logics that underlie two distinct approaches to energy-efficiency retrofits in the Netherlands. It is explained how these logics lead to differing viewpoints on problems and solutions on the road to scale-up of such retrofits. For this, the paper makes use of the institutional logics approach. The institutional logics approach can be used to understand the reasoning that lies behind material practices and is here applied to two renovation approaches. Institutional logics theory can also explain why actors focus their attention on certain problems and solutions, namely, they focus on the ones consistent with the institutional logics that guide them. The thorough understanding of the empirical domain hereby achieved facilitates the policy formulation process and helps to set suitable system boundaries within frameworks for analyzing technological change processes.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnergy Research & Social ScienceArticle . 2020License: CC BY NC NDData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnergy Research & Social ScienceArticle . 2020License: CC BY NC NDData sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:Elsevier BV Authors: Harmsen, Robert; Crijns-Graus, Wina;In many countries the role of combined heat & power (CHP) generation in the power & heat sector is significant. However, in decomposition analyses of the power & heat sector the contribution of CHP to observed changes in primary energy use or CO2 emissions is generally not made explicit. In this paper, the contribution of CHP is shown for eight countries (China, Denmark, France, Germany, Italy, the Netherlands, Poland and the USA) in the period 2005–2016. In addition, an alternative method is proposed for power & heat sector decomposition analysis with five driving factors: volume effect, subsector effect, heat effect, fuel mix effect and efficiency effect. This method combines indicators from existing decomposition methods and complements them with a CHP specific heat effect. The proposed method provides improved insight in the factors driving change in primary energy use or CO2 emissions in the power and heat sector, especially in case changes take place regarding either 1) the power-to-heat ratio, 2) the share of CHP electricity in total electricity production, 3) the CHP fuel mix, and/or 4) the efficiency of individual CHP fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Elsevier BV Authors: Hu, J.; Harmsen, R.; Crijns-Graus, Wina;Decentralized generation is often connected to the distribution grid and consumed by end-users in geographical proximity. Compared to large centralized power plants supplying electricity that flows down the voltage chain in a top-down manner, decentralized generation can avoid grid losses and save primary energy (PE). This paper developed and demonstrated a generic method to account for avoided grid losses and PE savings from decentralized generation, using the EU as the case-region. The method can serve as an easy tool to support the discussion and decision-making process regarding a technology choice between centralized and decentralized generation. Based on this method, we estimated that for each MWh of electricity produced from decentralized generation in the EU, it saves 0.136-0.350 MWh PE under on-site generation mode and 0.103-0.286 MWh PE under off-site generation mode due to avoided grid losses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.11.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.11.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 NetherlandsPublisher:Springer Science and Business Media LLC Authors: Lars J Nilsson; Mirjam Harmelink; Robert Harmsen;Realizing a 20% energy efficiency improvement in Europe by 2020 requires the introduction of good new energy efficiency policies as well as strengthening and enforcing the existing policies. This raises the question: what characterizes good and effective energy efficiency policies and their implementation? Systematic ex post evaluation of energy efficiency policies can reveal factors determining not only what works and what does not but also explain why. Ex post evaluation of 20 energy efficiency policy instruments applied across different sectors and countries in Europe among others showed that ex post evaluation does not yet have a high priority among policy makers: Often, quantitative targets and clear timeframes are lacking, and monitoring information is not collected on a regular basis. Our analysis, however, did reveal some general factors in the process of design and implementation of policy instruments that appear as important including (1) existence of clear goals and a mandate for the implementing organization, (2) the ability to balance and combine flexibility and continuity, (3) the involvement of stakeholders, and (4) the ability to adapt to and integrate adjacent policies or develop consistent policy packages. The analysis was performed using a uniform methodology called "theory-based policy evaluation". The general principle behind this approach is that a likely theory is drawn up on the program's various steps of logic of intervention to achieve its targeted impact in terms of energy efficiency improvement. The approach has several benefits over other ex post evaluation methods because (1) the whole policy implementation process is evaluated and the focus is not just on the final impacts, (2) through the development of indicators for each step in the implementation process, the "successes and failures" can be determined to the greatest extent possible, and (3) by applying this approach, we not only learn whether policies are successful or not but also why they succeeded or failed and how they can be improved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-008-9007-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-008-9007-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Authors: Mandley, S.; Harmsen, R.; Worrell, E.; Harmsen, Robert;The EU building sector is widely acknowledged as a primary source of anthropogenic emissions, contributing directly to climate change. Recent studies estimate the sector to account for approximately 40% of primary energy use and 50% of extracted materials within the European Union. The Energy Performance of Buildings Directive 2010/31/EU requires efficiency improvements to be implemented in all new EU buildings, with a requirement that from 2020 all new buildings constructed should be "nearly energy zero". From this stance the embodied energy of a building, when taking a full life-cycle perspective, is gaining importance and will become a more dominant issue to tackle when striving for sector-wide reduction in the coming years. This research took the UK as a case study and investigated where reduction measures are most suited to reduce material and energy consumption. The study proposes four reduction measures strategically focusing on hotspots of excessive consumption. The findings demonstrate that significant reductions can be achieved for the UK building sector's annual material and embodied energy consumption in the short to midterm, with projections estimating resource and embodied energy savings respectively of 4.7% and 6.4% by 2020 and 9.3% and 28.6% by 2030.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.10.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.10.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu