- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC R. Puniya; B.R. Bazaya; Anil Kumar; B.C. Sharma; Nesar Ahmed Nesar; Ranjeet Singh Bochalya; M.C. Dwivedi; Neetu Sharma; Rakesh Kumar; Jyoti Sharma; Ashu Sharma; Swati Mehta;pmid: 37935693
pmc: PMC10630349
AbstractA two-year field study was conducted duringRabi2018–2019 and 2019–20 to find out the influence of different residue and weed management practices on weed dynamics, growth, yield, energetics, carbon footprint, economics and soil properties in zero-tilled sown wheat at Research Farm, AICRP-Weed management, SKUAST-Jammu. The experiment with four rice residue management practices and four weed management practices was conducted in a Strip-Plot Design and replicated thrice. The results showed that residue retention treatments recorded lower weed density, biomass and higher wheat growth, yield attributes and yields of wheat as compared to no residue treatment. The magnitude of increase in wheat grain yield was 17.55, 16.98 and 7.41% when treated with 125% recommended dose of nitrogen + residue + waste decomposer (RDN + R + WD), 125% RDN + R, and 100% RDN + R, respectively, compared to no residue treatment. Further, all three herbicidal treatments decreased weed density and biomass than weedy treatments. Consequently, a reduction of 29.30, 28.00, and 25.70% in grain yield were observed in control as compared to sulfosulfuron + carfentrazone, clodinafop-propargyl + metasulfuron, and clodinafop-propargyl + metribuzin, respectively. Moreover, 125% RDN + R + WD obtained significantly higher energy output (137860 MJ ha−1) and carbon output (4522 kg CE/ha), but 100% RDN had significantly higher net energy (101802 MJ ha−1), energy use efficiency (7.66), energy productivity (0.23 kg MJ−1), energy profitability (6.66 kg MJ−1), carbon efficiency (7.66), and less carbon footprint (7.66) as compared to other treatments. Despite this, treatments with 125% RDN + R + WD and 125% RDN + R provided 17.58 and 16.96% higher gross returns, and 24.45% and 23.17% net outcomes, respectively, than that of control. However, compared to the control, sulfosulfuron + carfentrazone showed considerably higher energy output (140492 MJ ha−1), net energy (104778 MJ ha−1), energy usage efficiency (4.70), energy productivity (0.14 kg MJ−1), energy profitability (3.70 kg MJ−1), carbon output (4624 kg CE ha−1), carbon efficiency (4.71), and lower carbon footprint (0.27). Furthermore, sulfosulfuron + carfentrazone, clodinafop-propargyl + metasulfuron, and clodinafop-propargyl + metribuzin recorded 29.29% and 38.42%, 27.99%, and 36.91%, 25.69% and 34.32% higher gross returns and net returns over control treatment, respectively. All three herbicides showed higher gross returns, net returns, and benefit cost ratio over control. The soil nutrient status was not significantly affected either by residue or weed management practices. Therefore, based on present study it can be concluded that rice residue retention with 25% additional nitrogen and weed management by clodinafop-propargyl + metasulfuron herbicide found suitable for zero tillage wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-023-45488-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-023-45488-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Subhradip Bhattacharjee; Amitava Panja; Moumita Panda; Subham Dutta; Susanta Dutta; Rakesh Kumar; Dinesh Kumar; Malu Ram Yadav; Tatiana Minkina; Valery P. Kalinitchenko; Rupesh Kumar Singh; Vishnu D. Rajput;doi: 10.3390/su15032040
Conservation agriculture has recently been a hot topic of agricultural research and has generated significant global interest. Conservation agriculture has three core principles: minimal soil disturbance, permanent soil cover, and crop rotations. The research on this topic has also witnessed a boom in recent years as the number of peer-reviewed literature on conservation agriculture is rising exponentially. This study critically examines all the peer-reviewed documents published on conservation agriculture from the 1990s to 2021 and indexed in the web of science core database. The search returned 3023 documents, which were then processed in the R-based bibliometric package for annual scientific production trend, source, author, document, citation, keyword analysis, and co-occurrence networking using VOSviewer. Our findings show remarkable growth in conservation agriculture research in recent times, although it witnessed a shortfall in 2021. Notably, 15 core source journals contribute the most to the field, while 8692 researchers have authored or co-authored at least a document on conservation agriculture. While the USA, India, and Australia are front runners in conservation agriculture research, the spread of the topic is worldwide.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2040/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2040/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Munish Leharwan; Yogesh Kumar; Rakesh Kumar; Pankaj Kumar Saraswat; Raj Kumar; Arun Kumar Thaliyil Veetil; Subhradip Bhattacharjee; Ankush Kumar; Sandeep Kumar;doi: 10.3390/su151712736
Rice–wheat cropping system (RWCS) is a dominant agricultural practice in the Indo-Gangetic plains, particularly in the North–Western states of India. The prevalent practice of open burning of rice residue, driven by the need for timely land preparation, poses severe environmental and health consequences, including nutrient loss, greenhouse gas emissions, high concentrations of particulate matter (PM), and disruption of the ecological cycle. This study focuses on implementing effective management practices in the RWCS through tillage-based crop establishment, residue retention, and incorporation methods. The objective is to improve crop yield and its attributes by enhancing soil health properties. A split-plot experimental design was practiced with four different treatments, zero-tillage with manual harvesting (ZT), Happy Seeder with combine harvester (HS), Happy Seeder with Mulcher and combine harvesting, and conventional tillage (CT). By evaluating soil nutrient content, including organic carbon (OC), N, P, and K, at a 0–10 cm depth, the study demonstrates the superiority of the mulcher with Happy Seeder (MHS), which significantly increased soil nutrient levels by 105, 59, 102, and 97%, respectively, compared to conventional tilled broadcasted wheat (CT). Furthermore, the MHS treatment exhibited the highest yield of 56.8 q ha−1, outperforming the yield of 43.6 q ha−1 recorded under conventional tilled broadcasted wheat. These findings underscore the critical role of surface residue retention with MHS in ensuring crop productivity and overall production sustainability of the RWCS in Haryana, India. Moreover, effective rice residue management holds long-term implications for agricultural resilience, farm economics, environmental conservation, and human health. It emphasizes the importance of adopting sustainable practices, prioritizing research efforts, and advocating for policies that ensure the prolonged sustainability and productivity of the RWCS while safeguarding environmental well-being.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Malu Ram Yadav; Sandeep Kumar; Milan Kumar Lal; Dinesh Kumar; Rakesh Kumar; Rajendra Kumar Yadav; Sandeep Kumar; Gangadhar Nanda; Jogendra Singh; Pushpika Udawat; Nirmal Kumar Meena; Prakash Kumar Jha; Tatiana Minkina; Alexey P. Glinushkin; Valery P. Kalinitchenko; Vishnu D. Rajput;Although nitrogen (N) is the most limiting nutrient for agricultural production, its overuse is associated with environmental pollution, increased concentration of greenhouse gases, and several human and animal health implications. These implications are greatly affected by biochemical transformations and losses of N such as volatilization, leaching, runoff, and denitrification. Half of the globally produced N fertilizers are used to grow three major cereals—rice, wheat, and maize—and their current level of N recovery is approximately 30–50%. The continuously increasing application of N fertilizers, despite lower recovery of cereals, can further intensify the environmental and health implications of leftover N. To address these implications, the improvement in N use efficiency (NUE) by adopting efficient agronomic practices and modern breeding and biotechnological tools for developing N efficient cultivars requires immediate attention. Conventional and marker-assisted selection methods can be used to map quantitative trait loci, and their introgression in elite germplasm leads to the creation of cultivars with better NUE. Moreover, gene-editing technology gives the opportunity to develop high-yielding cultivars with improved N utilization capacity. The most reliable and cheap methods include agronomic practices such as site-specific N management, enhanced use efficiency fertilizers, resource conservation practices, precision farming, and nano-fertilizers that can help farmers to reduce the environmental losses of N from the soil–plant system, thus improving NUE. Our review illuminates insights into recent advances in local and scientific soil and crop management technologies, along with conventional and modern breeding technologies on how to increase NUE that can help reduce linked N pollution and health implications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13020527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13020527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Malu Ram Yadav; Mukesh Choudhary; Jogendra Singh; Milan Kumar Lal; Prakash Kumar Jha; Pushpika Udawat; Narendra Kumar Gupta; Vishnu D. Rajput; Nitin Kumar Garg; Chirag Maheshwari; Muzaffar Hasan; Sunita Gupta; Tarun Kumar Jatwa; Rakesh Kumar; Arvind Kumar Yadav; P. V. Vara Prasad;Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms23052838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms23052838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Dinesh Kumar; Magan Singh; Sanjeev Kumar; Rajesh Kumar Meena; Rakesh Kumar; Malu Ram Yadav; Manish Kushwaha; Govind Makarana; Subhradip Bhattacharjee; Suryakanta Kashyap; Bisworanjita Biswal; null Rajesh; Parveen Kumar;Inappropriate agricultural practices consume more input energy and emit higher greenhouse gases (GHGs) which cause global warming and climate change, thereby threatening environmental sustainability. To identify energy and carbon-efficient varieties and nutrient management practices, the present study was undertaken during the kharif season of 2018 and 2019 in a split-plot design with three varieties of fodder maize (African Tall, J-1006 and P-3396) and four nutrient management practices such as N0: Absolute control, N1: 100% recommended dose of fertilizers (RDF), N2: 75% RDF + plant growth promoting rhizobacteria (PGPR) + Panchagavya spray and N3: 50% RDF + 25% farmyard manure (FYM) + PGPR + Panchagavya spray). Results indicated that variety J-1006 and applying 75% RDF + PGPR + Panchagavya spray produced significantly higher dry fodder yield. Among the varieties, J-1006 recorded the highest total energy output (224,123 MJ ha−1), net energy (211,280 MJ ha−1), energy use efficiency (17.64), energy productivity (0.98 kg MJ−1), energy profitability (16.64), and lowest specific energy (1.03 MJ ha−1). Regarding nutrient management, 75% RDF + PGPR + Panchagavya spray fetched the highest total energy output (229,470 MJ ha−1) and net energy (215,482 MJ ha−1). However, energy use efficiency, energy productivity, and energy profitability were significantly higher with integrated nutrient management (N2 and N3) over 100% RDF. Concerning the carbon estimation, J-1006 resulted in a significantly higher carbon output (5479 kg CE ha−1), net carbon gain (5029 kg CE ha−1), carbon efficiency (12.46), carbon sustainability index (11.46), and significantly lower carbon footprint per unit yield (CFy) (131.3 kg CO2-e Mg−1). For nutrient management, the application of 75% RDF + PGPR + Panchagavya spray showed significantly higher carbon output (5609 kg CE ha−1) and net carbon gain (5112 kg CE ha−1). However, significantly higher carbon efficiency, carbon sustainability index, and lower CFy were reported with integrated nutrient management over 100% RDF. Overall, selecting the J-1006 variety and applying 75% RDF + PGPR + Panchagavya spray for fodder maize cultivation could be the most productive in terms of dry fodder production, energy, and carbon efficiency approach.
Agronomy arrow_drop_down AgronomyOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/4/981/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/4/981/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC R. Puniya; B.R. Bazaya; Anil Kumar; B.C. Sharma; Nesar Ahmed Nesar; Ranjeet Singh Bochalya; M.C. Dwivedi; Neetu Sharma; Rakesh Kumar; Jyoti Sharma; Ashu Sharma; Swati Mehta;pmid: 37935693
pmc: PMC10630349
AbstractA two-year field study was conducted duringRabi2018–2019 and 2019–20 to find out the influence of different residue and weed management practices on weed dynamics, growth, yield, energetics, carbon footprint, economics and soil properties in zero-tilled sown wheat at Research Farm, AICRP-Weed management, SKUAST-Jammu. The experiment with four rice residue management practices and four weed management practices was conducted in a Strip-Plot Design and replicated thrice. The results showed that residue retention treatments recorded lower weed density, biomass and higher wheat growth, yield attributes and yields of wheat as compared to no residue treatment. The magnitude of increase in wheat grain yield was 17.55, 16.98 and 7.41% when treated with 125% recommended dose of nitrogen + residue + waste decomposer (RDN + R + WD), 125% RDN + R, and 100% RDN + R, respectively, compared to no residue treatment. Further, all three herbicidal treatments decreased weed density and biomass than weedy treatments. Consequently, a reduction of 29.30, 28.00, and 25.70% in grain yield were observed in control as compared to sulfosulfuron + carfentrazone, clodinafop-propargyl + metasulfuron, and clodinafop-propargyl + metribuzin, respectively. Moreover, 125% RDN + R + WD obtained significantly higher energy output (137860 MJ ha−1) and carbon output (4522 kg CE/ha), but 100% RDN had significantly higher net energy (101802 MJ ha−1), energy use efficiency (7.66), energy productivity (0.23 kg MJ−1), energy profitability (6.66 kg MJ−1), carbon efficiency (7.66), and less carbon footprint (7.66) as compared to other treatments. Despite this, treatments with 125% RDN + R + WD and 125% RDN + R provided 17.58 and 16.96% higher gross returns, and 24.45% and 23.17% net outcomes, respectively, than that of control. However, compared to the control, sulfosulfuron + carfentrazone showed considerably higher energy output (140492 MJ ha−1), net energy (104778 MJ ha−1), energy usage efficiency (4.70), energy productivity (0.14 kg MJ−1), energy profitability (3.70 kg MJ−1), carbon output (4624 kg CE ha−1), carbon efficiency (4.71), and lower carbon footprint (0.27). Furthermore, sulfosulfuron + carfentrazone, clodinafop-propargyl + metasulfuron, and clodinafop-propargyl + metribuzin recorded 29.29% and 38.42%, 27.99%, and 36.91%, 25.69% and 34.32% higher gross returns and net returns over control treatment, respectively. All three herbicides showed higher gross returns, net returns, and benefit cost ratio over control. The soil nutrient status was not significantly affected either by residue or weed management practices. Therefore, based on present study it can be concluded that rice residue retention with 25% additional nitrogen and weed management by clodinafop-propargyl + metasulfuron herbicide found suitable for zero tillage wheat.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-023-45488-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-023-45488-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Subhradip Bhattacharjee; Amitava Panja; Moumita Panda; Subham Dutta; Susanta Dutta; Rakesh Kumar; Dinesh Kumar; Malu Ram Yadav; Tatiana Minkina; Valery P. Kalinitchenko; Rupesh Kumar Singh; Vishnu D. Rajput;doi: 10.3390/su15032040
Conservation agriculture has recently been a hot topic of agricultural research and has generated significant global interest. Conservation agriculture has three core principles: minimal soil disturbance, permanent soil cover, and crop rotations. The research on this topic has also witnessed a boom in recent years as the number of peer-reviewed literature on conservation agriculture is rising exponentially. This study critically examines all the peer-reviewed documents published on conservation agriculture from the 1990s to 2021 and indexed in the web of science core database. The search returned 3023 documents, which were then processed in the R-based bibliometric package for annual scientific production trend, source, author, document, citation, keyword analysis, and co-occurrence networking using VOSviewer. Our findings show remarkable growth in conservation agriculture research in recent times, although it witnessed a shortfall in 2021. Notably, 15 core source journals contribute the most to the field, while 8692 researchers have authored or co-authored at least a document on conservation agriculture. While the USA, India, and Australia are front runners in conservation agriculture research, the spread of the topic is worldwide.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2040/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2040/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Munish Leharwan; Yogesh Kumar; Rakesh Kumar; Pankaj Kumar Saraswat; Raj Kumar; Arun Kumar Thaliyil Veetil; Subhradip Bhattacharjee; Ankush Kumar; Sandeep Kumar;doi: 10.3390/su151712736
Rice–wheat cropping system (RWCS) is a dominant agricultural practice in the Indo-Gangetic plains, particularly in the North–Western states of India. The prevalent practice of open burning of rice residue, driven by the need for timely land preparation, poses severe environmental and health consequences, including nutrient loss, greenhouse gas emissions, high concentrations of particulate matter (PM), and disruption of the ecological cycle. This study focuses on implementing effective management practices in the RWCS through tillage-based crop establishment, residue retention, and incorporation methods. The objective is to improve crop yield and its attributes by enhancing soil health properties. A split-plot experimental design was practiced with four different treatments, zero-tillage with manual harvesting (ZT), Happy Seeder with combine harvester (HS), Happy Seeder with Mulcher and combine harvesting, and conventional tillage (CT). By evaluating soil nutrient content, including organic carbon (OC), N, P, and K, at a 0–10 cm depth, the study demonstrates the superiority of the mulcher with Happy Seeder (MHS), which significantly increased soil nutrient levels by 105, 59, 102, and 97%, respectively, compared to conventional tilled broadcasted wheat (CT). Furthermore, the MHS treatment exhibited the highest yield of 56.8 q ha−1, outperforming the yield of 43.6 q ha−1 recorded under conventional tilled broadcasted wheat. These findings underscore the critical role of surface residue retention with MHS in ensuring crop productivity and overall production sustainability of the RWCS in Haryana, India. Moreover, effective rice residue management holds long-term implications for agricultural resilience, farm economics, environmental conservation, and human health. It emphasizes the importance of adopting sustainable practices, prioritizing research efforts, and advocating for policies that ensure the prolonged sustainability and productivity of the RWCS while safeguarding environmental well-being.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Malu Ram Yadav; Sandeep Kumar; Milan Kumar Lal; Dinesh Kumar; Rakesh Kumar; Rajendra Kumar Yadav; Sandeep Kumar; Gangadhar Nanda; Jogendra Singh; Pushpika Udawat; Nirmal Kumar Meena; Prakash Kumar Jha; Tatiana Minkina; Alexey P. Glinushkin; Valery P. Kalinitchenko; Vishnu D. Rajput;Although nitrogen (N) is the most limiting nutrient for agricultural production, its overuse is associated with environmental pollution, increased concentration of greenhouse gases, and several human and animal health implications. These implications are greatly affected by biochemical transformations and losses of N such as volatilization, leaching, runoff, and denitrification. Half of the globally produced N fertilizers are used to grow three major cereals—rice, wheat, and maize—and their current level of N recovery is approximately 30–50%. The continuously increasing application of N fertilizers, despite lower recovery of cereals, can further intensify the environmental and health implications of leftover N. To address these implications, the improvement in N use efficiency (NUE) by adopting efficient agronomic practices and modern breeding and biotechnological tools for developing N efficient cultivars requires immediate attention. Conventional and marker-assisted selection methods can be used to map quantitative trait loci, and their introgression in elite germplasm leads to the creation of cultivars with better NUE. Moreover, gene-editing technology gives the opportunity to develop high-yielding cultivars with improved N utilization capacity. The most reliable and cheap methods include agronomic practices such as site-specific N management, enhanced use efficiency fertilizers, resource conservation practices, precision farming, and nano-fertilizers that can help farmers to reduce the environmental losses of N from the soil–plant system, thus improving NUE. Our review illuminates insights into recent advances in local and scientific soil and crop management technologies, along with conventional and modern breeding technologies on how to increase NUE that can help reduce linked N pollution and health implications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13020527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13020527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Malu Ram Yadav; Mukesh Choudhary; Jogendra Singh; Milan Kumar Lal; Prakash Kumar Jha; Pushpika Udawat; Narendra Kumar Gupta; Vishnu D. Rajput; Nitin Kumar Garg; Chirag Maheshwari; Muzaffar Hasan; Sunita Gupta; Tarun Kumar Jatwa; Rakesh Kumar; Arvind Kumar Yadav; P. V. Vara Prasad;Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS.
International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms23052838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms23052838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Dinesh Kumar; Magan Singh; Sanjeev Kumar; Rajesh Kumar Meena; Rakesh Kumar; Malu Ram Yadav; Manish Kushwaha; Govind Makarana; Subhradip Bhattacharjee; Suryakanta Kashyap; Bisworanjita Biswal; null Rajesh; Parveen Kumar;Inappropriate agricultural practices consume more input energy and emit higher greenhouse gases (GHGs) which cause global warming and climate change, thereby threatening environmental sustainability. To identify energy and carbon-efficient varieties and nutrient management practices, the present study was undertaken during the kharif season of 2018 and 2019 in a split-plot design with three varieties of fodder maize (African Tall, J-1006 and P-3396) and four nutrient management practices such as N0: Absolute control, N1: 100% recommended dose of fertilizers (RDF), N2: 75% RDF + plant growth promoting rhizobacteria (PGPR) + Panchagavya spray and N3: 50% RDF + 25% farmyard manure (FYM) + PGPR + Panchagavya spray). Results indicated that variety J-1006 and applying 75% RDF + PGPR + Panchagavya spray produced significantly higher dry fodder yield. Among the varieties, J-1006 recorded the highest total energy output (224,123 MJ ha−1), net energy (211,280 MJ ha−1), energy use efficiency (17.64), energy productivity (0.98 kg MJ−1), energy profitability (16.64), and lowest specific energy (1.03 MJ ha−1). Regarding nutrient management, 75% RDF + PGPR + Panchagavya spray fetched the highest total energy output (229,470 MJ ha−1) and net energy (215,482 MJ ha−1). However, energy use efficiency, energy productivity, and energy profitability were significantly higher with integrated nutrient management (N2 and N3) over 100% RDF. Concerning the carbon estimation, J-1006 resulted in a significantly higher carbon output (5479 kg CE ha−1), net carbon gain (5029 kg CE ha−1), carbon efficiency (12.46), carbon sustainability index (11.46), and significantly lower carbon footprint per unit yield (CFy) (131.3 kg CO2-e Mg−1). For nutrient management, the application of 75% RDF + PGPR + Panchagavya spray showed significantly higher carbon output (5609 kg CE ha−1) and net carbon gain (5112 kg CE ha−1). However, significantly higher carbon efficiency, carbon sustainability index, and lower CFy were reported with integrated nutrient management over 100% RDF. Overall, selecting the J-1006 variety and applying 75% RDF + PGPR + Panchagavya spray for fodder maize cultivation could be the most productive in terms of dry fodder production, energy, and carbon efficiency approach.
Agronomy arrow_drop_down AgronomyOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/4/981/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4395/13/4/981/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy13040981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu