- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Timipere S. Farrow; Chenggong Sun; Colin E. Snape;Abstract In this study, pyrolysis of sawdust and pinewood (120–250 μm) was conducted in a drop-tube furnace (DTF) at temperatures of 900, 1100, 1300 °C and residence times of 50–600 ms in both CO2 and N2 atmospheres. The samples are fed at a rate of 5–10 g/h in a gentle flow of nitrogen (1 L/min) to ensure laminar flow. A silica tracer method has been developed to accurately determine the high temperature volatile matter yields. The elemental analysis of chars collected allowed the study of the release of nitrogen. BET surface area, scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were also carried out to study the chars produced. Burnout tests were conducted at 1100 °C, an O2 concentration of 5% v/v in N2 and CO2 respectively, using the chars produced at the same temperature and a residence time of 200 ms. In nitrogen, the maximum volatile yield achieved was 97 wt% while in CO2, the maximum volatile yield was over 99 wt% for residence times above 200 ms, indicating virtually complete gasification of the char. These are the highest reported volatile matter yields for biomass obtained using a DTF. The release of nitrogen into the volatile phase is proportional to the yield of volatiles both for air and oxy-fuel conditions. SEM images revealed higher porosities of the DTF CO2 chars than those of N2, being consistent with their higher BET surface areas. Faster char burnout was obtained for oxy-fuel firing attributable to the CO2/char gasification reactions. The results will be useful for modeling dedicated oxy-biomass firing and co-firing systems.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2015.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2015.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Timipere S. Farrow; Chenggong Sun; Colin E. Snape;Abstract In this study, pyrolysis of sawdust and pinewood (120–250 μm) was conducted in a drop-tube furnace (DTF) at temperatures of 900, 1100, 1300 °C and residence times of 50–600 ms in both CO2 and N2 atmospheres. The samples are fed at a rate of 5–10 g/h in a gentle flow of nitrogen (1 L/min) to ensure laminar flow. A silica tracer method has been developed to accurately determine the high temperature volatile matter yields. The elemental analysis of chars collected allowed the study of the release of nitrogen. BET surface area, scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were also carried out to study the chars produced. Burnout tests were conducted at 1100 °C, an O2 concentration of 5% v/v in N2 and CO2 respectively, using the chars produced at the same temperature and a residence time of 200 ms. In nitrogen, the maximum volatile yield achieved was 97 wt% while in CO2, the maximum volatile yield was over 99 wt% for residence times above 200 ms, indicating virtually complete gasification of the char. These are the highest reported volatile matter yields for biomass obtained using a DTF. The release of nitrogen into the volatile phase is proportional to the yield of volatiles both for air and oxy-fuel conditions. SEM images revealed higher porosities of the DTF CO2 chars than those of N2, being consistent with their higher BET surface areas. Faster char burnout was obtained for oxy-fuel firing attributable to the CO2/char gasification reactions. The results will be useful for modeling dedicated oxy-biomass firing and co-firing systems.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2015.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2015.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu