- home
- Advanced Search
- Energy Research
- Open Access
- Embargo
- Energy Research
- Open Access
- Embargo
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Serbia, Serbia, Sweden, Serbia, Finland, SerbiaPublisher:Frontiers Media SA Authors:Juanjo Rodríguez;
Juanjo Rodríguez; Agneta Andersson; Agneta Andersson; +6 AuthorsJuanjo Rodríguez
Juanjo Rodríguez in OpenAIREJuanjo Rodríguez;
Juanjo Rodríguez; Agneta Andersson; Agneta Andersson; Erik Björn;Juanjo Rodríguez
Juanjo Rodríguez in OpenAIRESari Timonen;
Sonia Brugel; Sonia Brugel;Sari Timonen
Sari Timonen in OpenAIREAleksandra Skrobonja;
Aleksandra Skrobonja
Aleksandra Skrobonja in OpenAIREOwen Rowe;
Owen Rowe
Owen Rowe in OpenAIREMethylmercury (MeHg) is a potent neurotoxin commonly found in aquatic environments and primarily formed by microbial methylation of inorganic divalent mercury (Hg(II)) under anoxic conditions. Recent evidence, however, points to the production of MeHg also in oxic pelagic waters, but the magnitude and the drivers for this process remain unclear. Here, we performed a controlled experiment testing the hypothesis that inputs of terrestrial dissolved organic matter (tDOM) to coastal waters enhance MeHg formation via increased bacterial activity. Natural brackish seawater from a coastal area of the Baltic Sea was exposed to environmentally relevant levels of Hg(II) and additions of tDOM according to climate change scenarios. MeHg formation was observed to be coupled to elevated bacterial production rates, which, in turn, was linked to input levels of tDOM. The increased MeHg formation was, however, not coupled to any specific change in bacterial taxonomic composition nor to an increased abundance of known Hg(II) methylation genes. Instead, we found that the abundance of genes for the overall bacterial carbon metabolism was higher under increased tDOM additions. The findings of this study may have important ecological implications in a changing global climate by pointing to the risk of increased exposure of MeHg to pelagic biota.
Frontiers in Microbi... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.809166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 49visibility views 49 download downloads 62 Powered bymore_vert Frontiers in Microbi... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2022.809166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:California Digital Library (CDL) Methylmercury (MeHg) formation is a concerning environmental issue described in waters and sediments from multiple aquatic ecosystems. The genetic and metabolic bases of mercury (Hg) methylation have been well described in anoxic environments, but a number of factors seem to point towards alternative pathways potentially occurring in pelagic waters under oxic conditions. Boreal aquatic ecosystems are predicted to undergo increasing concentrations of dissolved organic matter (DOM) as a result of higher terrestrial runoff induced by climate change, which may have important implications in the formation of MeHg in the water column. In this review, different Hg methylation mechanisms postulated in the literature are discussed, with particular focus on potential pathways independent of the hgcAB gene pair and occurring under oxic conditions. Potential effects of DOM on Hg methylation and MeHg bioaccumulation are examined in the context of climate in boreal aquatic ecosystems. Furthermore, the implementation of meta-omic technologies and standardized methods into field measurements and incubation experiments is discussed as a valuable tool to determine taxonomic and functional aspects of Hg methylation in oxic waters and under climate change-induced conditions.
Frontiers in Marine ... arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/x5395b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Publikationer från Umeå universitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Umeå universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31223/x5395b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Sweden, FinlandPublisher:Frontiers Media SA Authors:Juanjo Rodríguez;
Christine M. J. Gallampois;Juanjo Rodríguez
Juanjo Rodríguez in OpenAIRESari Timonen;
Agneta Andersson; +9 AuthorsSari Timonen
Sari Timonen in OpenAIREJuanjo Rodríguez;
Christine M. J. Gallampois;Juanjo Rodríguez
Juanjo Rodríguez in OpenAIRESari Timonen;
Agneta Andersson; Agneta Andersson;Sari Timonen
Sari Timonen in OpenAIREHanna Sinkko;
Peter Haglund; Åsa M. M. Berglund; Matyas Ripszam; Daniela Figueroa;Hanna Sinkko
Hanna Sinkko in OpenAIREMats Tysklind;
Mats Tysklind
Mats Tysklind in OpenAIREOwen Rowe;
Owen Rowe;Owen Rowe
Owen Rowe in OpenAIRECoastal ecosystems are highly dynamic and can be strongly influenced by climate change, anthropogenic activities (e.g., pollution), and a combination of the two pressures. As a result of climate change, the northern hemisphere is predicted to undergo an increased precipitation regime, leading in turn to higher terrestrial runoff and increased river inflow. This increased runoff will transfer terrestrial dissolved organic matter (tDOM) and anthropogenic contaminants to coastal waters. Such changes can directly influence the resident biology, particularly at the base of the food web, and can influence the partitioning of contaminants and thus their potential impact on the food web. Bacteria have been shown to respond to high tDOM concentration and organic pollutants loads, and could represent the entry of some pollutants into coastal food webs. We carried out a mesocosm experiment to determine the effects of: (1) increased tDOM concentration, (2) organic pollutant exposure, and (3) the combined effect of these two factors, on pelagic bacterial communities. This study showed significant responses in bacterial community composition under the three environmental perturbations tested. The addition of tDOM increased bacterial activity and diversity, while the addition of organic pollutants led to an overall reduction of these parameters, particularly under concurrent elevated tDOM concentration. Furthermore, we identified 33 bacterial taxa contributing to the significant differences observed in community composition, as well as 35 bacterial taxa which responded differently to extended exposure to organic pollutants. These findings point to the potential impact of organic pollutants under future climate change conditions on the basal coastal ecosystem, as well as to the potential utility of natural bacterial communities as efficient indicators of environmental disturbance.
Frontiers in Microbi... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationer från Umeå universitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2018.02926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Microbi... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationer från Umeå universitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmicb.2018.02926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu