- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 FrancePublisher:Public Library of Science (PLoS) Southwell, Colin; Emmerson, Louise; Mckinlay, John; Newbery, Kym; Takahashi, Akinori; Kato, Akiko; Barbraud, Christophe; Delord, Karine; Weimerskirch, Henri;Seabirds are considered to be useful and practical indicators of the state of marine ecosystems because they integrate across changes in the lower trophic levels and the physical environment. Signals from this key group of species can indicate broad scale impacts or response to environmental change. Recent studies of penguin populations, the most commonly abundant Antarctic seabirds in the west Antarctic Peninsula and western Ross Sea, have demonstrated that physical changes in Antarctic marine environments have profound effects on biota at high trophic levels. Large populations of the circumpolar-breeding Adélie penguin occur in East Antarctica, but direct, standardized population data across much of this vast coastline have been more limited than in other Antarctic regions. We combine extensive new population survey data, new population estimation methods, and re-interpreted historical survey data to assess decadal-scale change in East Antarctic Adélie penguin breeding populations. We show that, in contrast to the west Antarctic Peninsula and western Ross Sea where breeding populations have decreased or shown variable trends over the last 30 years, East Antarctic regional populations have almost doubled in abundance since the 1980's and have been increasing since the earliest counts in the 1960's. The population changes are associated with five-year lagged changes in the physical environment, suggesting that the changing environment impacts primarily on the pre-breeding age classes. East Antarctic marine ecosystems have been subject to a number of changes over the last 50 years which may have influenced Adélie penguin population growth, including decadal-scale climate variation, an inferred mid-20th century sea-ice contraction, and early-to-mid 20th century exploitation of fish and whale populations.
PLoS ONE arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0139877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0139877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, South Africa, Germany, Italy, United States, France, United Kingdom, United Kingdom, Belgium, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | SGER: Foraging Patterns o..., NSF | Collaborative Research: W...NSF| SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf ,NSF| Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross SeaPeter L. Boveng; Ian D. Jonsen; Mark A. Hindell; Yan Ropert-Coudert; Knowles Kerry; Rachael Alderman; Silvia Olmastroni; Peter G. Ryan; Leigh G. Torres; Azwianewi B. Makhado; Andrew D. Lowther; Stuart Corney; Luis A. Hückstädt; Dominik A Nachtsheim; Dominik A Nachtsheim; Kit M. Kovacs; Simon Wotherspoon; Simon Wotherspoon; Michael E. Goebel; Jefferson T. Hinke; José C. Xavier; José C. Xavier; Ben Raymond; Ben Raymond; Ben Raymond; Karine Delord; Kerstin Jerosch; Arnoldus Schytte Blix; Ben Arthur; Clive R. McMahon; Clive R. McMahon; Barbara Wienecke; Klemens Pütz; Pierre A. Pistorius; Rochelle Constantine; Bruno Danis; Keith W. Nicholls; Mary-Anne Lea; Arnaud Tarroux; Ryan R. Reisinger; Ryan R. Reisinger; Joachim Plötz; Louise Emmerson; Kimberly T. Goetz; Akinori Takahashi; Jaimie Cleeland; Sébastien Descamps; Colin Southwell; Mike Double; Michael A. Fedak; Simon D. Goldsworthy; Erling S. Nordøy; Iain J. Staniland; Mônica M. C. Muelbert; Mônica M. C. Muelbert; P J Nico de Bruyn; Christophe Guinet; Kieran Lawton; Mercedes Santos; Philip N. Trathan; Lars Boehme; Henri Weimerskirch; John L. Bengtson; Roger Kirkwood; Norman Ratcliffe; Ewan D. Wakefield; Gerald L. Kooyman; David R. Thompson; Robert J. M. Crawford; Grant Ballard; Marthán N Bester; Steven L. Chown; Virginia Andrews-Goff; Virginia Andrews-Goff; Jean-Benoît Charrassin; Richard A. Phillips; Phil O'b. Lyver; Birgitte I. McDonald; Nick Gales; Charles-André Bost; M. E. I. Marquez; Wayne Z. Trivelpiece; Anton Van de Putte; Akiko Kato; Robert Harcourt; Luciano Dalla Rosa; Ari S. Friedlaender; Christian Lydersen; Horst Bornemann; Daniel P. Costa;Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.
CORE arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2566t0r0Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2126-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 198 citations 198 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2566t0r0Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2126-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Wiley Funded by:UKRI | GW4+ - a consortium of ex...UKRI| GW4+ - a consortium of excellence in innovative research trainingNorman Ratcliffe; Rod Downie; Stephen C. Votier; Harriet L. Clewlow; Harriet L. Clewlow; Akinori Takahashi; Shinichi Watanabe;Abstract Interspecific competition can drive niche partitioning along multidimensional axes, including allochrony. Competitor matching will arise where the phenology of sympatric species with similar ecological requirements responds to climate change at different rates such that allochrony is reduced. Our study quantifies the degree of niche segregation in foraging areas and depths that arises from allochrony in sympatric Adélie and chinstrap penguins and explores its resilience to climate change. Three‐dimensional tracking data were sampled during all stages of the breeding season and were used to parameterise a behaviour‐based model that quantified spatial overlap of foraging areas under different scenarios of allochrony. The foraging ranges of the two species were similar within breeding stages, but differences in their foraging ranges between stages, combined with the observed allochrony of 28 days, resulted in them leapfrogging each other through the breeding season such that they were exploiting different foraging locations on the same calendar dates. Allochrony reduced spatial overlap in the peripheral utilisation distribution of the two species by 54.0% over the entire breeding season, compared to a scenario where the two species bred synchronously. Analysis of long‐term phenology data revealed that both species advanced their laying dates in relation to October air temperatures at the same rate, preserving allochrony and niche partitioning. However, if allochrony is reduced by just a single day, the spatial overlap of the core utilisation distribution increased by an average of 2.1% over the entire breeding season. Niche partitioning between the two species by allochrony appears to be resilient to climate change and so competitor matching cannot be implicated in the observed population declines of the two penguin species across the Western Antarctic Peninsula.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 FrancePublisher:Public Library of Science (PLoS) Southwell, Colin; Emmerson, Louise; Mckinlay, John; Newbery, Kym; Takahashi, Akinori; Kato, Akiko; Barbraud, Christophe; Delord, Karine; Weimerskirch, Henri;Seabirds are considered to be useful and practical indicators of the state of marine ecosystems because they integrate across changes in the lower trophic levels and the physical environment. Signals from this key group of species can indicate broad scale impacts or response to environmental change. Recent studies of penguin populations, the most commonly abundant Antarctic seabirds in the west Antarctic Peninsula and western Ross Sea, have demonstrated that physical changes in Antarctic marine environments have profound effects on biota at high trophic levels. Large populations of the circumpolar-breeding Adélie penguin occur in East Antarctica, but direct, standardized population data across much of this vast coastline have been more limited than in other Antarctic regions. We combine extensive new population survey data, new population estimation methods, and re-interpreted historical survey data to assess decadal-scale change in East Antarctic Adélie penguin breeding populations. We show that, in contrast to the west Antarctic Peninsula and western Ross Sea where breeding populations have decreased or shown variable trends over the last 30 years, East Antarctic regional populations have almost doubled in abundance since the 1980's and have been increasing since the earliest counts in the 1960's. The population changes are associated with five-year lagged changes in the physical environment, suggesting that the changing environment impacts primarily on the pre-breeding age classes. East Antarctic marine ecosystems have been subject to a number of changes over the last 50 years which may have influenced Adélie penguin population growth, including decadal-scale climate variation, an inferred mid-20th century sea-ice contraction, and early-to-mid 20th century exploitation of fish and whale populations.
PLoS ONE arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0139877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0139877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, South Africa, Germany, Italy, United States, France, United Kingdom, United Kingdom, Belgium, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | SGER: Foraging Patterns o..., NSF | Collaborative Research: W...NSF| SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf ,NSF| Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross SeaPeter L. Boveng; Ian D. Jonsen; Mark A. Hindell; Yan Ropert-Coudert; Knowles Kerry; Rachael Alderman; Silvia Olmastroni; Peter G. Ryan; Leigh G. Torres; Azwianewi B. Makhado; Andrew D. Lowther; Stuart Corney; Luis A. Hückstädt; Dominik A Nachtsheim; Dominik A Nachtsheim; Kit M. Kovacs; Simon Wotherspoon; Simon Wotherspoon; Michael E. Goebel; Jefferson T. Hinke; José C. Xavier; José C. Xavier; Ben Raymond; Ben Raymond; Ben Raymond; Karine Delord; Kerstin Jerosch; Arnoldus Schytte Blix; Ben Arthur; Clive R. McMahon; Clive R. McMahon; Barbara Wienecke; Klemens Pütz; Pierre A. Pistorius; Rochelle Constantine; Bruno Danis; Keith W. Nicholls; Mary-Anne Lea; Arnaud Tarroux; Ryan R. Reisinger; Ryan R. Reisinger; Joachim Plötz; Louise Emmerson; Kimberly T. Goetz; Akinori Takahashi; Jaimie Cleeland; Sébastien Descamps; Colin Southwell; Mike Double; Michael A. Fedak; Simon D. Goldsworthy; Erling S. Nordøy; Iain J. Staniland; Mônica M. C. Muelbert; Mônica M. C. Muelbert; P J Nico de Bruyn; Christophe Guinet; Kieran Lawton; Mercedes Santos; Philip N. Trathan; Lars Boehme; Henri Weimerskirch; John L. Bengtson; Roger Kirkwood; Norman Ratcliffe; Ewan D. Wakefield; Gerald L. Kooyman; David R. Thompson; Robert J. M. Crawford; Grant Ballard; Marthán N Bester; Steven L. Chown; Virginia Andrews-Goff; Virginia Andrews-Goff; Jean-Benoît Charrassin; Richard A. Phillips; Phil O'b. Lyver; Birgitte I. McDonald; Nick Gales; Charles-André Bost; M. E. I. Marquez; Wayne Z. Trivelpiece; Anton Van de Putte; Akiko Kato; Robert Harcourt; Luciano Dalla Rosa; Ari S. Friedlaender; Christian Lydersen; Horst Bornemann; Daniel P. Costa;Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.
CORE arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2566t0r0Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2126-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 198 citations 198 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/2566t0r0Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-02520188Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversità degli Studi di Siena: USiena airArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-2126-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Wiley Funded by:UKRI | GW4+ - a consortium of ex...UKRI| GW4+ - a consortium of excellence in innovative research trainingNorman Ratcliffe; Rod Downie; Stephen C. Votier; Harriet L. Clewlow; Harriet L. Clewlow; Akinori Takahashi; Shinichi Watanabe;Abstract Interspecific competition can drive niche partitioning along multidimensional axes, including allochrony. Competitor matching will arise where the phenology of sympatric species with similar ecological requirements responds to climate change at different rates such that allochrony is reduced. Our study quantifies the degree of niche segregation in foraging areas and depths that arises from allochrony in sympatric Adélie and chinstrap penguins and explores its resilience to climate change. Three‐dimensional tracking data were sampled during all stages of the breeding season and were used to parameterise a behaviour‐based model that quantified spatial overlap of foraging areas under different scenarios of allochrony. The foraging ranges of the two species were similar within breeding stages, but differences in their foraging ranges between stages, combined with the observed allochrony of 28 days, resulted in them leapfrogging each other through the breeding season such that they were exploiting different foraging locations on the same calendar dates. Allochrony reduced spatial overlap in the peripheral utilisation distribution of the two species by 54.0% over the entire breeding season, compared to a scenario where the two species bred synchronously. Analysis of long‐term phenology data revealed that both species advanced their laying dates in relation to October air temperatures at the same rate, preserving allochrony and niche partitioning. However, if allochrony is reduced by just a single day, the spatial overlap of the core utilisation distribution increased by an average of 2.1% over the entire breeding season. Niche partitioning between the two species by allochrony appears to be resilient to climate change and so competitor matching cannot be implicated in the observed population declines of the two penguin species across the Western Antarctic Peninsula.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu