- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Mercè Correa; Trisha L. Chuck; Maria N. Arizzi-LaFrance; Peter J. McLaughlin; John D. Salamone;pmid: 16487981
Although low doses of systemic ethanol stimulate locomotion in mice, in rats the typical response to peripheral ethanol administration is a dose-dependent suppression of motor activity. In the present study, male rats received acute doses of ethanol IP (0.0, 0.25, 0.5, 1.0 or 2.0 g/kg) and were tested on several behavioral tasks related to the motor suppressive or sedative effects of the drug. This research design allowed for comparisons between the effects of ethanol on different behavioral tasks in order to determine which tasks were most sensitive to the drug (i.e., which tasks would yield deficits that appear at lower doses). In the first two experiments, rats were evaluated on a sedation rating scale, and ataxia/motor incoordination was assessed using the rotarod apparatus. Administration of 2.0 g/kg ethanol produced sedation as measured by the sedation scale, and also impaired performance on the rotarod. In a third experiment, ethanol reduced locomotion in the stabilimeter at several doses and times after IP injection, with 0.25 g/kg being the lowest dose that produced a significant decrease in locomotion. Finally, experiment four studied the effects of ethanol on operant lever pressing reinforced on a fixed ratio 5 (FR5) schedule for food reinforcement. Data showed suppressive effects on lever pressing at doses of 1.0, and 2.0 g/kg ethanol. Analysis of the interresponse time distribution showed that ethanol produced a modest slowing of operant responding, as well as fragmentation of the temporal pattern of responding and increases in pausing. Taken together, these results indicate that rats can demonstrate reduced locomotion and slowing of operant responding at doses lower than those that result in sedation or ataxia as measured by the rotarod. The detection of subtle changes in different motor test across a broad range of ethanol doses is important for understanding ethanol effects in other cognitive, motivational or sensory processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.lfs.2005.12.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.lfs.2005.12.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: Carlos M.G. Aragon; Mercè Correa; Carles Sanchis-Segura;pmid: 11495670
It has been demonstrated that acute administration of lead to mice enhances brain catalase activity and ethanol-induced locomotion. These effects of lead seem to be related, since they show similar time courses and occur at similar doses. In the present study, in an attempt to further evaluate the relation between brain catalase activity and lead-induced changes in ethanol-stimulated locomotion, the interaction between lead acetate and 3-amino-1H,2,4-triazole (AT), a well-known catalase inhibitor, was assessed. In this study, lead acetate or saline was acutely injected intraperitoneally to Swiss mice at doses of 50 or 100 mg/kg 7 days before testing. On the test day, animals received an intraperitoneal injection of AT (0, 10, or 500 mg/kg). Five hours following AT treatment, ethanol (0.0 or 2.5 g/kg, ip) was injected and the animals were placed in open-field chambers, in which locomotion was measured for 10 min. Neither lead exposure nor AT administration, either alone or in combination, had any effect on spontaneous locomotor activity. AT treatment reduced ethanol-induced locomotion as well as brain catalase activity. On the other hand, ambulation and brain catalase activity were significantly increased by both doses of lead. Furthermore, AT significantly reduced the potentiation produced by lead acetate on brain catalase and on ethanol-induced locomotor activity in a dose-dependent manner. A significant correlation was found between locomotion and catalase activity across all test conditions. The results show that brain catalase activity is involved in the effects of lead acetate on ethanol-induced locomotion in mice. Thus, this study confirms the notion that brain catalase provides the molecular basis for understanding some of the mechanisms of the action of ethanol in the central nervous system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0031-9384(01)00511-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0031-9384(01)00511-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Authors: Marta Miquel; Mercè Correa; Carlos M.G. Aragon;pmid: 10837853
Several reports have demonstrated that acute lead acetate administration enhances brain catalase activity in animals. Other reports have shown a role of brain catalase in ethanol-induced behaviors. In the present study we investigated the effect of acute lead acetate on brain catalase activity and on ethanol-induced locomotion, as well as whether mice treated with different doses of lead acetate, and therefore, with enhanced brain catalase activity, exhibit an increased ethanol-induced locomotor activity. Lead acetate or saline was injected IP in Swiss mice at doses of 50, 100, 150, or 200 mg/kg. At 7 days following this treatment, ethanol (0.0, 1.5, 2.0, 2.5, or 3.0 g/kg) was injected IP, and the animals were placed in the open-field chambers. Results indicated that the locomotor activity induced by ethanol was significantly increased in the groups treated with lead acetate. Maximum ethanol-induced locomotor activity increase was found in animals treated with 100 mg/kg of lead acetate and 2.5 g/kg of ethanol. Total brain catalase activity in lead-pretreated animals also showed a significant induction, which was maximum at 100 mg/kg of lead acetate treatment. No differences in blood ethanol levels were observed among treatment groups. The fact that brain catalase and ethanol-induced locomotor activity followed a similar pattern could suggest a relationship between both lead acetate effects and also a role for brain catalase in ethanol-induced behaviors.
Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0091-3057(00)00204-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0091-3057(00)00204-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Springer Science and Business Media LLC John D. Salamone; M. N. Arizzi; Susana Mingote; Adrienne J. Betz; Mercè Correa;pmid: 12955297
Low doses of ethanol stimulate locomotion in mice, but in rats the typical response to peripheral ethanol administration is a dose-dependent suppression of locomotion. Moreover, chronic ethanol administration fails to produce signs of locomotor sensitization in rats.The present study was undertaken to determine whether intraventricular (i.c.v.) infusions of low doses of ethanol (as determined by comparisons with systemic doses, and by analyses of brain extract ethanol levels) could increase locomotor activity in rats after acute or repeated administration.Male rats received acute doses of ethanol i.p. (0.0, 0.25, 0.5, 1.0, or 2.0 g/kg) or i.c.v. (0.0, 0.7, 1.4, or 2.8 micromol) and were tested for motor activity. In a third experiment, repeated i.c.v. vehicle or ethanol (2.8 micromol) was administered for 15 sessions over a 30-day period, and motor activity was recorded. This phase was followed by a single challenge session, in which a low dose of ethanol (0.7 micromol) was injected i.c.v. to both groups of rats.Rats injected with i.p. ethanol showed no increase in activity at low doses, with higher doses suppressing activity. In contrast, i.c.v. injections of low doses of ethanol increased motor activity. After repeated administration, ethanol-treated rats were more sensitive than control-treated rats to the locomotor stimulant effect of ethanol.These results demonstrate that central administration of low doses of ethanol can increase locomotor activity in rats and suggest that i.c.v. ethanol can produce some signs of motor sensitization, a characteristic that has been related to the potential addictive properties of many drugs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-003-1557-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-003-1557-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Ovid Technologies (Wolters Kluwer Health) M. CORREA; VIAGGI, MARIA CRISTINA; M. A. ESCRIG; M. PASCUAL; C. GUERRI; VAGLINI, FRANCESCA; C. M. G. ARAGON; CORSINI, GIOVANNI UMBERTO;It has been shown that acetaldehyde is an active metabolite of ethanol with central actions that modulate behavior. Catalase has been proposed as the main enzyme responsible for the synthesis of acetaldehyde from ethanol in the brain. Recent studies, however, suggest that cytochrome, in particular the isoform P450 2E1, can also contribute to the central metabolism of ethanol.Cytochrome P4502E1 knockout (KO) mice were used to assess the involvement of this isoenzyme in some of the acute and chronic behavioral effects of ethanol. Ethanol-induced locomotion, locomotor sensitization, and voluntary ethanol intake were evaluated in cytochrome P4502E1 KO mice and their wild-type (WT) counterparts.Spontaneous locomotion in KO mice was lower than that seen in the WT mice. Acute administration of ethanol (1.5 g/kg, intraperitoneally) increased locomotion to a similar extent in both strains of mice. Repeated intermittent administration of ethanol produced sensitization in both strains, but it was very subtle in the KO mice compared with the effect in the WT mice. KO mice showed a reduction in preference for ethanol intake at low concentrations (4-8% v/v). Interestingly, western blot for catalase in the brain and liver showed that KO mice had higher levels of catalase expression compared with WT mice.These results show some impact of the mutation on ethanol-induced sensitization and on voluntary ethanol preference. The lack of a substantial impact of the mutation can be explained by the fact that the KO animals have a compensatory increase in catalase expression compared with WT mice, therefore possibly showing alterations in the formation of acetaldehyde after ethanol administration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/fpc.0b013e328324e726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/fpc.0b013e328324e726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Carlos M.G. Aragon; Raúl Pastor; Mercè Correa; Carles Sanchis-Segura;pmid: 15276784
The C57BL/6J strain of inbred mice shows a characteristic pattern of ethanol-induced behaviors: very weak acute locomotor stimulation, a lack of locomotor-sensitizing effect of ethanol, and a high level of ethanol intake. This strain has relatively low levels of activity of the ethanol metabolizing enzyme catalase, and it has been proposed that brain catalase plays a role in the modulation of some behavioral effects of ethanol. In the first study of the present paper, we investigated the effects of pharmacological manipulations of brain catalase activity on C57BL/6J mice in acute ethanol-induced locomotion and ethanol intake. Results indicated that the reduction in motor activity produced by ethanol was reversed by pretreatment with catalase potentiators and it was enhanced by catalase inhibitors. In addition, ethanol intake was highly correlated with brain catalase activity in mice treated with a catalase potentiator. In the second study, F1 hybrid mice (SWXB6) from the outbred Swiss-Webster mice and the inbred C57BL/6J mice were used. Basal brain catalase activity levels of F1 mice were intermediate between to those of the two progenitor genotypes. That profile of catalase activity was parallel to the acute-ethanol-induced locomotion and to repeated-ethanol-induced motor sensitization effects observed across the three types of mice. These data suggest that brain catalase activity modifications in the C57BL/6J strain change the pattern of several ethanol-related behaviors in this inbred mouse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physbeh.2004.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physbeh.2004.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Marta Miquel; Mercè Correa; Carles Sanchis-Segura; Carlos M.G. Aragon;pmid: 15694276
Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Italy, Spain, SpainPublisher:Frontiers Media SA Funded by:NIH | Effort-related Functions ...NIH| Effort-related Functions of Nucleus Accumbens Adenosine A2A ReceptorsAuthors: Correa M; ACQUAS, ELIO MARIA GIOACHINO; Salamone JD;As with many events in the history of science, the development of the hypothesis that acetaldehyde is a plausible psychoactive substance with specific central effects (not related to its toxic- ity) has not been either incremental or progressive. Rather, it has evolved through a process of fits and starts. Initial clinical obser- vations suggesting that accumulation of acetaldehyde could be used as a therapy for alcoholism did not lead to a highly effective treatment, and in fact, it was noted early on that small amounts of ethanol consumed under these conditions (i.e., blockade of aldehyde dehydrogenase) could be perceived as being even more pleasurable ( Chevens, 1953 ). Although some laboratory data in animals appeared at that time ( Carpenter and Macleod, 1952), it took a decade for the pre-clinical studies to focus on the poten- tial importance of acetaldehyde. Since Myers proposed in the late 60’s that acetaldehyde could be a mediator of some of the effects of ethanol ( Myers and Veale, 1969), advances in this field have gone through a push-pull process.
Frontiers in Behavio... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BYData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnbeh.2014.00249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 36visibility views 36 download downloads 27 Powered bymore_vert Frontiers in Behavio... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BYData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnbeh.2014.00249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Laura Font; Carlos M.G. Aragon; Héctor M. Manrique; Mercè Correa; Miguel A. Escrig;pmid: 18587667
Considerable evidence indicates that brain ethanol metabolism mediated by catalase is involved in modulating some of the behavioral and physiological effects of this drug, which suggests that the first metabolite of ethanol, acetaldehyde, may have central actions. Previous results have shown that acetaldehyde administered into the lateral ventricles produced anxiolysis in a novel open arena in rats.The present studies investigate the effects of centrally formed acetaldehyde on ethanol-induced anxiolysis.The effects of the catalase inhibitor sodium azide (SA; 0 or 10 mg/kg, IP) on ethanol-induced anxiolysis (0.0, 0.5, or 1.0 g/kg, IP) were evaluated in CD1 mice in two anxiety paradigms, the elevated plus maze and the dark/light box. Additional studies assessed the effect of the noncompetitive catalase inhibitor 3-amino-1,2,4-triazole (AT; 0.5 g/kg, IP) and the acetaldehyde inactivation agent D: -penicillamine (50 mg/kg, IP) on the plus maze.SA reduced the anxiolytic effects of ethanol on several parameters evaluated in the elevated plus maze and in the dark/light box. In the plus maze, AT completely blocked and D-penicillamine significantly reduced the anxiolytic properties of ethanol.Thus, when cerebral metabolism of ethanol into acetaldehyde is blocked by catalase inhibitors, or acetaldehyde is inactivated, there is a suppressive effect on the anxiolytic actions of ethanol. These data provide further support for the idea that centrally formed or administered acetaldehyde can contribute to some of the psychopharmacological actions of ethanol, including its anxiolytic properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-008-1219-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-008-1219-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors: Escrig, M.A.; Pardo, Marta; Aragón, Carlos; Correa, M.;pmid: 22005600
Peripheral accumulation of acetaldehyde, the first metabolite of ethanol, produces autonomic responses in humans called "flushing". The aversive characteristics of flushing observed in some populations with an isoform of aldehyde dehydrogenase (ALDH2) less active, are the basis for treating alcoholics with disulfiram, an ALDH inhibitor. Although ethanol and centrally formed acetaldehyde have anxiolytic effects, peripheral accumulation of acetaldehyde may be aversive in part because it is anxiogenic.We investigated the effect of direct administration of acetaldehyde on behavioral measures of anxiety and on hormonal markers of stress in mice. The impact of disulfiram on the anxiolytic actions of ethanol was evaluated. Acetate (a metabolite of acetaldehyde) was also studied.CD1 male mice received acetaldehyde (0, 25, 50, 75 or 100 mg/kg) at different time intervals and were assessed in the elevated plus maze and in the dark-light box. Corticosterone release after acetaldehyde administration was also assessed. Additional experiments evaluated the impact of disulfiram on the anxiolytic effect of ethanol (0 or 1 mg/kg), and the effect of acetate on the plus maze.Direct administration of acetaldehyde (100 mg/kg) had an anxiogenic effect at 1, 11 or 26 min after IP administration. Acetaldehyde was ten times more potent than ethanol at inducing corticosterone release. Disulfiram did not affect behavior on its own, but blocked the anxiolytic effect of ethanol at doses of 30 and 60 mg/kg, and had an anxiogenic effect at the highest dose (90 mg/kg) when co-administered with ethanol. Acetate did not affect any of the anxiety parameters.Peripheral administration or accumulation of acetaldehyde produces anxiogenic effects and induces endocrine stress responses. This effect is not mediated by its metabolite acetate.
Repositori d'Objecte... arrow_drop_down Repositori Institucional de la Universitat Jaume IArticle . 2012Data sources: Repositori Institucional de la Universitat Jaume IPharmacology Biochemistry and BehaviorArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbb.2011.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 22visibility views 22 Powered bymore_vert Repositori d'Objecte... arrow_drop_down Repositori Institucional de la Universitat Jaume IArticle . 2012Data sources: Repositori Institucional de la Universitat Jaume IPharmacology Biochemistry and BehaviorArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbb.2011.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Mercè Correa; Trisha L. Chuck; Maria N. Arizzi-LaFrance; Peter J. McLaughlin; John D. Salamone;pmid: 16487981
Although low doses of systemic ethanol stimulate locomotion in mice, in rats the typical response to peripheral ethanol administration is a dose-dependent suppression of motor activity. In the present study, male rats received acute doses of ethanol IP (0.0, 0.25, 0.5, 1.0 or 2.0 g/kg) and were tested on several behavioral tasks related to the motor suppressive or sedative effects of the drug. This research design allowed for comparisons between the effects of ethanol on different behavioral tasks in order to determine which tasks were most sensitive to the drug (i.e., which tasks would yield deficits that appear at lower doses). In the first two experiments, rats were evaluated on a sedation rating scale, and ataxia/motor incoordination was assessed using the rotarod apparatus. Administration of 2.0 g/kg ethanol produced sedation as measured by the sedation scale, and also impaired performance on the rotarod. In a third experiment, ethanol reduced locomotion in the stabilimeter at several doses and times after IP injection, with 0.25 g/kg being the lowest dose that produced a significant decrease in locomotion. Finally, experiment four studied the effects of ethanol on operant lever pressing reinforced on a fixed ratio 5 (FR5) schedule for food reinforcement. Data showed suppressive effects on lever pressing at doses of 1.0, and 2.0 g/kg ethanol. Analysis of the interresponse time distribution showed that ethanol produced a modest slowing of operant responding, as well as fragmentation of the temporal pattern of responding and increases in pausing. Taken together, these results indicate that rats can demonstrate reduced locomotion and slowing of operant responding at doses lower than those that result in sedation or ataxia as measured by the rotarod. The detection of subtle changes in different motor test across a broad range of ethanol doses is important for understanding ethanol effects in other cognitive, motivational or sensory processes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.lfs.2005.12.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.lfs.2005.12.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: Carlos M.G. Aragon; Mercè Correa; Carles Sanchis-Segura;pmid: 11495670
It has been demonstrated that acute administration of lead to mice enhances brain catalase activity and ethanol-induced locomotion. These effects of lead seem to be related, since they show similar time courses and occur at similar doses. In the present study, in an attempt to further evaluate the relation between brain catalase activity and lead-induced changes in ethanol-stimulated locomotion, the interaction between lead acetate and 3-amino-1H,2,4-triazole (AT), a well-known catalase inhibitor, was assessed. In this study, lead acetate or saline was acutely injected intraperitoneally to Swiss mice at doses of 50 or 100 mg/kg 7 days before testing. On the test day, animals received an intraperitoneal injection of AT (0, 10, or 500 mg/kg). Five hours following AT treatment, ethanol (0.0 or 2.5 g/kg, ip) was injected and the animals were placed in open-field chambers, in which locomotion was measured for 10 min. Neither lead exposure nor AT administration, either alone or in combination, had any effect on spontaneous locomotor activity. AT treatment reduced ethanol-induced locomotion as well as brain catalase activity. On the other hand, ambulation and brain catalase activity were significantly increased by both doses of lead. Furthermore, AT significantly reduced the potentiation produced by lead acetate on brain catalase and on ethanol-induced locomotor activity in a dose-dependent manner. A significant correlation was found between locomotion and catalase activity across all test conditions. The results show that brain catalase activity is involved in the effects of lead acetate on ethanol-induced locomotion in mice. Thus, this study confirms the notion that brain catalase provides the molecular basis for understanding some of the mechanisms of the action of ethanol in the central nervous system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0031-9384(01)00511-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0031-9384(01)00511-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Authors: Marta Miquel; Mercè Correa; Carlos M.G. Aragon;pmid: 10837853
Several reports have demonstrated that acute lead acetate administration enhances brain catalase activity in animals. Other reports have shown a role of brain catalase in ethanol-induced behaviors. In the present study we investigated the effect of acute lead acetate on brain catalase activity and on ethanol-induced locomotion, as well as whether mice treated with different doses of lead acetate, and therefore, with enhanced brain catalase activity, exhibit an increased ethanol-induced locomotor activity. Lead acetate or saline was injected IP in Swiss mice at doses of 50, 100, 150, or 200 mg/kg. At 7 days following this treatment, ethanol (0.0, 1.5, 2.0, 2.5, or 3.0 g/kg) was injected IP, and the animals were placed in the open-field chambers. Results indicated that the locomotor activity induced by ethanol was significantly increased in the groups treated with lead acetate. Maximum ethanol-induced locomotor activity increase was found in animals treated with 100 mg/kg of lead acetate and 2.5 g/kg of ethanol. Total brain catalase activity in lead-pretreated animals also showed a significant induction, which was maximum at 100 mg/kg of lead acetate treatment. No differences in blood ethanol levels were observed among treatment groups. The fact that brain catalase and ethanol-induced locomotor activity followed a similar pattern could suggest a relationship between both lead acetate effects and also a role for brain catalase in ethanol-induced behaviors.
Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0091-3057(00)00204-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Pharmacology Biochem... arrow_drop_down Pharmacology Biochemistry and BehaviorArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0091-3057(00)00204-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Springer Science and Business Media LLC John D. Salamone; M. N. Arizzi; Susana Mingote; Adrienne J. Betz; Mercè Correa;pmid: 12955297
Low doses of ethanol stimulate locomotion in mice, but in rats the typical response to peripheral ethanol administration is a dose-dependent suppression of locomotion. Moreover, chronic ethanol administration fails to produce signs of locomotor sensitization in rats.The present study was undertaken to determine whether intraventricular (i.c.v.) infusions of low doses of ethanol (as determined by comparisons with systemic doses, and by analyses of brain extract ethanol levels) could increase locomotor activity in rats after acute or repeated administration.Male rats received acute doses of ethanol i.p. (0.0, 0.25, 0.5, 1.0, or 2.0 g/kg) or i.c.v. (0.0, 0.7, 1.4, or 2.8 micromol) and were tested for motor activity. In a third experiment, repeated i.c.v. vehicle or ethanol (2.8 micromol) was administered for 15 sessions over a 30-day period, and motor activity was recorded. This phase was followed by a single challenge session, in which a low dose of ethanol (0.7 micromol) was injected i.c.v. to both groups of rats.Rats injected with i.p. ethanol showed no increase in activity at low doses, with higher doses suppressing activity. In contrast, i.c.v. injections of low doses of ethanol increased motor activity. After repeated administration, ethanol-treated rats were more sensitive than control-treated rats to the locomotor stimulant effect of ethanol.These results demonstrate that central administration of low doses of ethanol can increase locomotor activity in rats and suggest that i.c.v. ethanol can produce some signs of motor sensitization, a characteristic that has been related to the potential addictive properties of many drugs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-003-1557-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-003-1557-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Ovid Technologies (Wolters Kluwer Health) M. CORREA; VIAGGI, MARIA CRISTINA; M. A. ESCRIG; M. PASCUAL; C. GUERRI; VAGLINI, FRANCESCA; C. M. G. ARAGON; CORSINI, GIOVANNI UMBERTO;It has been shown that acetaldehyde is an active metabolite of ethanol with central actions that modulate behavior. Catalase has been proposed as the main enzyme responsible for the synthesis of acetaldehyde from ethanol in the brain. Recent studies, however, suggest that cytochrome, in particular the isoform P450 2E1, can also contribute to the central metabolism of ethanol.Cytochrome P4502E1 knockout (KO) mice were used to assess the involvement of this isoenzyme in some of the acute and chronic behavioral effects of ethanol. Ethanol-induced locomotion, locomotor sensitization, and voluntary ethanol intake were evaluated in cytochrome P4502E1 KO mice and their wild-type (WT) counterparts.Spontaneous locomotion in KO mice was lower than that seen in the WT mice. Acute administration of ethanol (1.5 g/kg, intraperitoneally) increased locomotion to a similar extent in both strains of mice. Repeated intermittent administration of ethanol produced sensitization in both strains, but it was very subtle in the KO mice compared with the effect in the WT mice. KO mice showed a reduction in preference for ethanol intake at low concentrations (4-8% v/v). Interestingly, western blot for catalase in the brain and liver showed that KO mice had higher levels of catalase expression compared with WT mice.These results show some impact of the mutation on ethanol-induced sensitization and on voluntary ethanol preference. The lack of a substantial impact of the mutation can be explained by the fact that the KO animals have a compensatory increase in catalase expression compared with WT mice, therefore possibly showing alterations in the formation of acetaldehyde after ethanol administration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/fpc.0b013e328324e726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/fpc.0b013e328324e726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Carlos M.G. Aragon; Raúl Pastor; Mercè Correa; Carles Sanchis-Segura;pmid: 15276784
The C57BL/6J strain of inbred mice shows a characteristic pattern of ethanol-induced behaviors: very weak acute locomotor stimulation, a lack of locomotor-sensitizing effect of ethanol, and a high level of ethanol intake. This strain has relatively low levels of activity of the ethanol metabolizing enzyme catalase, and it has been proposed that brain catalase plays a role in the modulation of some behavioral effects of ethanol. In the first study of the present paper, we investigated the effects of pharmacological manipulations of brain catalase activity on C57BL/6J mice in acute ethanol-induced locomotion and ethanol intake. Results indicated that the reduction in motor activity produced by ethanol was reversed by pretreatment with catalase potentiators and it was enhanced by catalase inhibitors. In addition, ethanol intake was highly correlated with brain catalase activity in mice treated with a catalase potentiator. In the second study, F1 hybrid mice (SWXB6) from the outbred Swiss-Webster mice and the inbred C57BL/6J mice were used. Basal brain catalase activity levels of F1 mice were intermediate between to those of the two progenitor genotypes. That profile of catalase activity was parallel to the acute-ethanol-induced locomotion and to repeated-ethanol-induced motor sensitization effects observed across the three types of mice. These data suggest that brain catalase activity modifications in the C57BL/6J strain change the pattern of several ethanol-related behaviors in this inbred mouse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physbeh.2004.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physbeh.2004.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Marta Miquel; Mercè Correa; Carles Sanchis-Segura; Carlos M.G. Aragon;pmid: 15694276
Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neulet.2004.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Italy, Spain, SpainPublisher:Frontiers Media SA Funded by:NIH | Effort-related Functions ...NIH| Effort-related Functions of Nucleus Accumbens Adenosine A2A ReceptorsAuthors: Correa M; ACQUAS, ELIO MARIA GIOACHINO; Salamone JD;As with many events in the history of science, the development of the hypothesis that acetaldehyde is a plausible psychoactive substance with specific central effects (not related to its toxic- ity) has not been either incremental or progressive. Rather, it has evolved through a process of fits and starts. Initial clinical obser- vations suggesting that accumulation of acetaldehyde could be used as a therapy for alcoholism did not lead to a highly effective treatment, and in fact, it was noted early on that small amounts of ethanol consumed under these conditions (i.e., blockade of aldehyde dehydrogenase) could be perceived as being even more pleasurable ( Chevens, 1953 ). Although some laboratory data in animals appeared at that time ( Carpenter and Macleod, 1952), it took a decade for the pre-clinical studies to focus on the poten- tial importance of acetaldehyde. Since Myers proposed in the late 60’s that acetaldehyde could be a mediator of some of the effects of ethanol ( Myers and Veale, 1969), advances in this field have gone through a push-pull process.
Frontiers in Behavio... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BYData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnbeh.2014.00249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 36visibility views 36 download downloads 27 Powered bymore_vert Frontiers in Behavio... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BYData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnbeh.2014.00249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Springer Science and Business Media LLC Laura Font; Carlos M.G. Aragon; Héctor M. Manrique; Mercè Correa; Miguel A. Escrig;pmid: 18587667
Considerable evidence indicates that brain ethanol metabolism mediated by catalase is involved in modulating some of the behavioral and physiological effects of this drug, which suggests that the first metabolite of ethanol, acetaldehyde, may have central actions. Previous results have shown that acetaldehyde administered into the lateral ventricles produced anxiolysis in a novel open arena in rats.The present studies investigate the effects of centrally formed acetaldehyde on ethanol-induced anxiolysis.The effects of the catalase inhibitor sodium azide (SA; 0 or 10 mg/kg, IP) on ethanol-induced anxiolysis (0.0, 0.5, or 1.0 g/kg, IP) were evaluated in CD1 mice in two anxiety paradigms, the elevated plus maze and the dark/light box. Additional studies assessed the effect of the noncompetitive catalase inhibitor 3-amino-1,2,4-triazole (AT; 0.5 g/kg, IP) and the acetaldehyde inactivation agent D: -penicillamine (50 mg/kg, IP) on the plus maze.SA reduced the anxiolytic effects of ethanol on several parameters evaluated in the elevated plus maze and in the dark/light box. In the plus maze, AT completely blocked and D-penicillamine significantly reduced the anxiolytic properties of ethanol.Thus, when cerebral metabolism of ethanol into acetaldehyde is blocked by catalase inhibitors, or acetaldehyde is inactivated, there is a suppressive effect on the anxiolytic actions of ethanol. These data provide further support for the idea that centrally formed or administered acetaldehyde can contribute to some of the psychopharmacological actions of ethanol, including its anxiolytic properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-008-1219-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00213-008-1219-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors: Escrig, M.A.; Pardo, Marta; Aragón, Carlos; Correa, M.;pmid: 22005600
Peripheral accumulation of acetaldehyde, the first metabolite of ethanol, produces autonomic responses in humans called "flushing". The aversive characteristics of flushing observed in some populations with an isoform of aldehyde dehydrogenase (ALDH2) less active, are the basis for treating alcoholics with disulfiram, an ALDH inhibitor. Although ethanol and centrally formed acetaldehyde have anxiolytic effects, peripheral accumulation of acetaldehyde may be aversive in part because it is anxiogenic.We investigated the effect of direct administration of acetaldehyde on behavioral measures of anxiety and on hormonal markers of stress in mice. The impact of disulfiram on the anxiolytic actions of ethanol was evaluated. Acetate (a metabolite of acetaldehyde) was also studied.CD1 male mice received acetaldehyde (0, 25, 50, 75 or 100 mg/kg) at different time intervals and were assessed in the elevated plus maze and in the dark-light box. Corticosterone release after acetaldehyde administration was also assessed. Additional experiments evaluated the impact of disulfiram on the anxiolytic effect of ethanol (0 or 1 mg/kg), and the effect of acetate on the plus maze.Direct administration of acetaldehyde (100 mg/kg) had an anxiogenic effect at 1, 11 or 26 min after IP administration. Acetaldehyde was ten times more potent than ethanol at inducing corticosterone release. Disulfiram did not affect behavior on its own, but blocked the anxiolytic effect of ethanol at doses of 30 and 60 mg/kg, and had an anxiogenic effect at the highest dose (90 mg/kg) when co-administered with ethanol. Acetate did not affect any of the anxiety parameters.Peripheral administration or accumulation of acetaldehyde produces anxiogenic effects and induces endocrine stress responses. This effect is not mediated by its metabolite acetate.
Repositori d'Objecte... arrow_drop_down Repositori Institucional de la Universitat Jaume IArticle . 2012Data sources: Repositori Institucional de la Universitat Jaume IPharmacology Biochemistry and BehaviorArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbb.2011.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 22visibility views 22 Powered bymore_vert Repositori d'Objecte... arrow_drop_down Repositori Institucional de la Universitat Jaume IArticle . 2012Data sources: Repositori Institucional de la Universitat Jaume IPharmacology Biochemistry and BehaviorArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pbb.2011.10.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu