Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David L. Hoover; Olivia L. Hajek; Melinda D. Smith; Kate Wilkins; +2 Authors

    AbstractClimate change is predicted to increase the frequency and intensity of extreme events including droughts and large precipitation events or “deluges.” While many studies have focused on the ecological impacts of individual events (e.g., a heat wave), there is growing recognition that when extreme events co‐occur as compound extremes, (e.g., a heatwave during a drought), the additive effects on ecosystems are often greater than either extreme alone. In this study, we assessed a unique type of extreme—a contrasting compound extreme—where the extremes may have offsetting, rather than additive ecological effects, by examining how a deluge during a drought impacts productivity and carbon cycling in a semi‐arid grassland. The experiment consisted of four treatments: a control (average precipitation), an extreme drought (<5th percentile), an extreme drought interrupted by a single deluge (>95th percentile), or an extreme drought interrupted by the equivalent amount of precipitation added in several smaller events. We highlight three key results. First, extreme drought resulted in early senescence, reduced carbon uptake, and a decline in net primary productivity relative to the control treatment. Second, the deluge imposed during extreme drought stimulated carbon fluxes and plant growth well above the levels of both the control and the drought treatment with several additional smaller rainfall events, emphasizing the importance of precipitation amount, event size, and timing. Third, while the deluge's positive effects on carbon fluxes and plant growth persisted for 1 month, the deluge did not completely offset the negative effects of extreme drought on end‐of‐season productivity. Thus, in the case of these contrasting hydroclimatic extremes, a deluge during a drought can stimulate temporally dynamic ecosystem processes (e.g., net ecosystem exchange) while only partially compensating for reductions in ecosystem functions over longer time scales (e.g., aboveground net primary productivity).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: V. F. Bondaruk; C. Xu; P. Wilfahrt; L. Yahdjian; +51 Authors

    Plant biomass tends to increase under nutrient addition and decrease under drought. Biotic and abiotic factors influence responses to both, making the combined impact of nutrient addition and drought difficult to predict. Using a globally distributed network of manipulative field experiments, we assessed grassland aboveground biomass response to both drought and increased nutrient availability at 26 sites across nine countries. Overall, drought reduced biomass by 19% and nutrient addition increased it by 24%, resulting in no net impact under combined drought and nutrient addition. Among the plant functional groups, only graminoids responded positively to nutrients during drought. However, these general responses depended on local conditions, especially aridity. Nutrient effects were stronger in arid grasslands and weaker in humid regions and nitrogen-rich soils, although nutrient addition alleviated drought effects the most in subhumid sites. Biomass responses were weaker with higher precipitation variability. Biomass increased more with increased nutrient availability and declined more with drought at high-diversity sites than at low-diversity sites. Our findings highlight the importance of local abiotic and biotic conditions in predicting grassland responses to anthropogenic nutrient and climate changes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Ecology & Evolution
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Ecology & Evolution
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Caitlin M. Broderick; Kate Wilkins; Melinda D. Smith; John M. Blair;

    AbstractClimate variability and periodic droughts have complex effects on carbon (C) fluxes, with uncertain implications for ecosystem C balance under a changing climate. Responses to climate change can be modulated by persistent effects of climate history on plant communities, soil microbial activity, and nutrient cycling (i.e., legacies). To assess how legacies of past precipitation regimes influence tallgrass prairie C cycling under new precipitation regimes, we modified a long‐term irrigation experiment that simulated a wetter climate for >25 years. We reversed irrigated and control (ambient precipitation) treatments in some plots and imposed an experimental drought in plots with a history of irrigation or ambient precipitation to assess how climate legacies affect aboveground net primary productivity (ANPP), soil respiration, and selected soil C pools. Legacy effects of elevated precipitation (irrigation) included higher C fluxes and altered labile soil C pools, and in some cases altered sensitivity to new climate treatments. Indeed, decades of irrigation reduced the sensitivity of both ANPP and soil respiration to drought compared with controls. Positive legacy effects of irrigation on ANPP persisted for at least 3 years following treatment reversal, were apparent in both wet and dry years, and were associated with altered plant functional composition. In contrast, legacy effects on soil respiration were comparatively short‐lived and did not manifest under natural or experimentally‐imposed “wet years,” suggesting that legacy effects on CO2efflux are contingent on current conditions. Although total soil C remained similar across treatments, long‐term irrigation increased labile soil C and the sensitivity of microbial biomass C to drought. Importantly, the magnitude of legacy effects for all response variables varied with topography, suggesting that landscape can modulate the strength and direction of climate legacies. Our results demonstrate the role of climate history as an important determinant of terrestrial C cycling responses to future climate changes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    25
    citations25
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David L. Hoover; Olivia L. Hajek; Melinda D. Smith; Kate Wilkins; +2 Authors

    AbstractClimate change is predicted to increase the frequency and intensity of extreme events including droughts and large precipitation events or “deluges.” While many studies have focused on the ecological impacts of individual events (e.g., a heat wave), there is growing recognition that when extreme events co‐occur as compound extremes, (e.g., a heatwave during a drought), the additive effects on ecosystems are often greater than either extreme alone. In this study, we assessed a unique type of extreme—a contrasting compound extreme—where the extremes may have offsetting, rather than additive ecological effects, by examining how a deluge during a drought impacts productivity and carbon cycling in a semi‐arid grassland. The experiment consisted of four treatments: a control (average precipitation), an extreme drought (<5th percentile), an extreme drought interrupted by a single deluge (>95th percentile), or an extreme drought interrupted by the equivalent amount of precipitation added in several smaller events. We highlight three key results. First, extreme drought resulted in early senescence, reduced carbon uptake, and a decline in net primary productivity relative to the control treatment. Second, the deluge imposed during extreme drought stimulated carbon fluxes and plant growth well above the levels of both the control and the drought treatment with several additional smaller rainfall events, emphasizing the importance of precipitation amount, event size, and timing. Third, while the deluge's positive effects on carbon fluxes and plant growth persisted for 1 month, the deluge did not completely offset the negative effects of extreme drought on end‐of‐season productivity. Thus, in the case of these contrasting hydroclimatic extremes, a deluge during a drought can stimulate temporally dynamic ecosystem processes (e.g., net ecosystem exchange) while only partially compensating for reductions in ecosystem functions over longer time scales (e.g., aboveground net primary productivity).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: V. F. Bondaruk; C. Xu; P. Wilfahrt; L. Yahdjian; +51 Authors

    Plant biomass tends to increase under nutrient addition and decrease under drought. Biotic and abiotic factors influence responses to both, making the combined impact of nutrient addition and drought difficult to predict. Using a globally distributed network of manipulative field experiments, we assessed grassland aboveground biomass response to both drought and increased nutrient availability at 26 sites across nine countries. Overall, drought reduced biomass by 19% and nutrient addition increased it by 24%, resulting in no net impact under combined drought and nutrient addition. Among the plant functional groups, only graminoids responded positively to nutrients during drought. However, these general responses depended on local conditions, especially aridity. Nutrient effects were stronger in arid grasslands and weaker in humid regions and nitrogen-rich soils, although nutrient addition alleviated drought effects the most in subhumid sites. Biomass responses were weaker with higher precipitation variability. Biomass increased more with increased nutrient availability and declined more with drought at high-diversity sites than at low-diversity sites. Our findings highlight the importance of local abiotic and biotic conditions in predicting grassland responses to anthropogenic nutrient and climate changes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nature Ecology & Evolution
    Article . 2025 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nature Ecology & Evolution
      Article . 2025 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Caitlin M. Broderick; Kate Wilkins; Melinda D. Smith; John M. Blair;

    AbstractClimate variability and periodic droughts have complex effects on carbon (C) fluxes, with uncertain implications for ecosystem C balance under a changing climate. Responses to climate change can be modulated by persistent effects of climate history on plant communities, soil microbial activity, and nutrient cycling (i.e., legacies). To assess how legacies of past precipitation regimes influence tallgrass prairie C cycling under new precipitation regimes, we modified a long‐term irrigation experiment that simulated a wetter climate for >25 years. We reversed irrigated and control (ambient precipitation) treatments in some plots and imposed an experimental drought in plots with a history of irrigation or ambient precipitation to assess how climate legacies affect aboveground net primary productivity (ANPP), soil respiration, and selected soil C pools. Legacy effects of elevated precipitation (irrigation) included higher C fluxes and altered labile soil C pools, and in some cases altered sensitivity to new climate treatments. Indeed, decades of irrigation reduced the sensitivity of both ANPP and soil respiration to drought compared with controls. Positive legacy effects of irrigation on ANPP persisted for at least 3 years following treatment reversal, were apparent in both wet and dry years, and were associated with altered plant functional composition. In contrast, legacy effects on soil respiration were comparatively short‐lived and did not manifest under natural or experimentally‐imposed “wet years,” suggesting that legacy effects on CO2efflux are contingent on current conditions. Although total soil C remained similar across treatments, long‐term irrigation increased labile soil C and the sensitivity of microbial biomass C to drought. Importantly, the magnitude of legacy effects for all response variables varied with topography, suggesting that landscape can modulate the strength and direction of climate legacies. Our results demonstrate the role of climate history as an important determinant of terrestrial C cycling responses to future climate changes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    25
    citations25
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph