- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Yue Wang; Shuangfei Li; Hong-Wei Yen; Nanqi Ren; Akihiko Kondo; Dillirani Nagarajan; Jo Shu Chang; Jo Shu Chang; Zhangli Hu; Duu-Jong Lee; Shih-Hsin Ho;pmid: 28579363
Biobutanol is gaining more attention as a potential alternative to ethanol, and the demand for fermentative biobutanol production has renewed interest. The main challenge faced in biobutanol production is the availability of feedstock. Using conventional agricultural biomass as feedstock is controversial and less efficient, while microalgae, the third generation feedstock, are considered promising feedstock for biobutanol production due to their high growth rate and high carbohydrates content. This review is primarily focused on biobutanol production by using carbohydrate-rich microalgal feedstock. Key technologies and challenges involved in producing butanol from microalgae are discussed in detail and future directions are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2017.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2017.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Congyu Zhang; Fanghua Li; Shih-Hsin Ho; Wei-Hsin Chen; Duleeka Sandamali Gunarathne; Pau Loke Show;pmid: 35561822
Oxidative torrefaction is a promising way for biomass upgrading and solid biofuel production. Alkali metals are considered to be efficient activators for enhancing biofuel upgrading during the thermal reaction process. Herein, the microalga Nannochloropsis Oceanica is selected as the feedstock for assessing potassium carbonate activated effect on solid biofuel production through oxidative torrefaction. The potential of potassium carbonate on microalgal biofuel properties upgrading is deeply explored. SEM observation and BET analysis show that torrefied microalgae can be transformed from a spherical structure with wrinkles to smaller particles with larger surface areas and higher total pore volumes, implying that potassium carbonate is a promising porogen. Moreover, potassium carbonate can significantly change the DTG curve at the temperatures of 250 °C and 300 °C from one peak to two peaks, inferring that the activated effect of potassium carbonate occurs on the torrefied microalgae. 13C NMR analysis reveals that the microalgal components significantly change as the torrefaction severity increases, with the decomposition of carbohydrate and protein components. When the potassium carbonate ratio increases from 0:1 to 1:1, the graphitization degree increase from 3.065 to 1.262, along with the increase in the HHV of solid biofuel from 25.024 MJ kg-1 to 31.890 MJ kg-1. In total, this study has comprehensively revealed the activated effect of potassium carbonate on improving the properties of microalgal solid biofuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2022.113389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2022.113389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Yahui, Sun; Deshen, Hu; Haixing, Chang; Shengnan, Li; Shih-Hsin, Ho;pmid: 36262000
Inhomogeneous light distribution and poor CO2 transfer capacity are two critical concerns impeding microalgal photosynthesis in practical suspended photobioreactors (PBRs). To provide valuable guidance on designing high-performance PBRs, recent progress on enhancing light and CO2 availabilities is systematically summarized in this review. Particularly, for the first time, the strategies on elevating light availability are classified and discussed from the perspectives of increasing incident light intensity, introducing internal illumination, optimizing flow field, regulating biomass concentrations, and enlarging illumination surface areas. Meanwhile, the strategies on enhancing CO2 light availability are outlined from the aspects of generating smaller bubbles, extending bubbles residence time, and facilitating CO2 dissolution using extra additives. Given the microalgal biomass production using current PBRs are still suffering from low productivity and economic feasibility, the possible future directions for PBRs implementation and development are presented. Altogether, this review is beneficial to furthering development of PBRs as a practical technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Xiao-Yue Zhang; Fengwu Bai; Fengwu Bai; Jo Shu Chang; Md. Asraful Alam; Suo-Lian Guo; Chun Wan; Shih-Hsin Ho; Xin-Qing Zhao; Xin-Qing Zhao;pmid: 25499148
Microalgae have been extensively studied for the production of various valuable products. Application of microalgae for the production of renewable energy has also received increasing attention in recent years. However, high cost of microalgal biomass harvesting is one of the bottlenecks for commercialization of microalgae-based industrial processes. Considering harvesting efficiency, operation economics and technological feasibility, flocculation is a superior method to harvest microalgae from mass culture. In this article, the latest progress of various microalgal cell harvesting methods via flocculation is reviewed with the emphasis on the current progress and prospect in environmentally friendly bio-based flocculation. Harvesting microalgae through bio-based flocculation is a promising component of the low-cost microalgal biomass production technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.11.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu246 citations 246 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.11.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Xue Li; Shengnan Li; Shih-Hsin Ho;pmid: 34774903
The boost of the greenhouse gases (GHGs, largely carbon dioxide - CO2) emissions owing to anthropogenic activity is one of the biggest global threats. Bio-CO2 emission reduction has received more and more attention as an environmentally sustainable approach. Microalgae are very popular in this regard because of excellent speed of growth, low costs of production, and resistance to extreme environments. Besides, most microalgae can undergo photosynthesis, where the CO2 and solar energy can be converted into sugar, and subsequently become biomass, providing a renewable and promising biofuel strategy with a few outstanding benefits. This review focuses on presenting CO2 sequestration by microalgae towards wastewater treatment and biodiesel production. First, the CO2 fixation mechanism by microalgae viz., sequestration and assimilation of CO2 in green microalgae as well as cyanobacteria were introduced. Besides, factors affecting CO2 sequestration in microalgae, containing microalgae species and cultivation conditions, such as light condition, photobioreactor, configuration, pH, CO2 concentration, temperature, and medium composition, were then comprehensively discussed. Special attention was given to the production of biodiesel as third-generation biofuel from various wastewater (CO2 biofixation), including processing steps of biodiesel production by microalgae, biodiesel production from wastewater, and improved methods. Furthermore, current life cycle assessment (LCA) and techno-economic analysis (TEA) used in biodiesel production were discussed. Finally, the research challenges and specific prospects were considered. Taken together, this review provides useful and updated information to facilitate the development of microalgal "green chemistry" and "environmental sustainability".
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.132863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.132863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Youping Xie; Xurui Zhao; Jo Shu Chang; Jianfeng Chen; Shen Ying; Baobei Wang; Xuqiu Yang; Shih-Hsin Ho;pmid: 28813692
The type and concentration of inorganic carbon and nitrogen sources were manipulated to improve cell growth and lutein productivity of Desmodesmus sp. F51. Using nitrate as nitrogen source, the better cell growth and lutein accumulation were obtained under 2.5% CO2 supply when compared to the addition of NaHCO3 or Na2CO3. To solve the pH variation problem of ammonium consumption, the strategy of using dual carbon sources (NaHCO3 and CO2) was explored. A lower bicarbonate-C: ammonium-N ratio led to a lower culture pH as well as lower lutein productivity, but significantly enhanced the auto-flocculation efficiency of the microalgal cells. The highest biomass productivity (939mg/L/d) and lutein productivity (5.22mg/L/d) were obtained when the bicarbonate-C/ammonium-N ratio and ammonium-N concentration were 1:1 and 150mg/L, respectively. The lutein productivity of 5.22mg/L/d is the highest value ever reported in the literature using batch phototrophic cultivation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Shih-Hsin Ho; Mathieu Pétrissans; Congyu Zhang; Wei Hsin Chen; Wei Hsin Chen; Wei Hsin Chen; Anélie Pétrissans; Wu Yang;Biomass structure and reactivity of torrefied products are a matter of great concern to explore the fuelproperties, pyrolysis characteristics, and microcosmic appearance, and life cycle assessment (LCA) is ofgreat importance to evaluate the environmental impact of the torrefaction process. This study in-vestigates the properties and microstructure of torrefied rice straw, including fuel properties, pyrolysiskinetics, crystallinity, surface functional group changes, and microscopic appearance. Results show that agood linear distribution appears between the comprehensive pyrolysis index (CPI) and atomic H/C ratio,and CPI and crystallinity index (CrI). Fourier transform infrared spectra depict dehydration, decarbox-ylation, and decarbonylation occur during the torrefaction process. The scanning electron microscopeimages illustrated the surface characteristics are closely related to the release of volatiles during thetorrefaction process. The solid 13 C NMR spectra of raw and torrefied rice straw reflect that the aromaticitywill improve with increasing the torrefaction severity. For LCA analysis, the environmental impact of thetorrefaction process shows a positive correlation with torrefaction temperature, and the global warmingpotential is in the range of 0.1469e0.2707 kg CO2 emission. This study is meaningful for the evaluation offuel properties and torrefaction performance as well as microstructure and reactivity of torrefied ricestraw.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Kuan Shiong Khoo; Shih-Hsin Ho; Guo Yong Yew; Pau Loke Show; Jun Wei Roy Chong; Jun Wei Roy Chong;pmid: 34052610
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyester which are biosynthesized from the intracellular cells of microalgae through the cultivation of organic food waste medium. Before cultivation process, food waste must undergo several pre-treatment techniques such as chemical, biological, physical or mechanical in order to solubilize complex food waste matter into simpler micro- and macronutrients in which allow bio-valorisation of microalgae and food waste compound during the cultivation process. This work reviews four microalgae genera namely Chlamydomonas, Chlorella, Spirulina, and Botryococcus, are selected as suitable species due to rapid growth rate, minimal nutrient requirement, greater adaptability and flexibility prior to lower the overall production cost and maximized the production of PHAs. This study also focuses on the different mode of cultivation for the accumulation of PHAs followed by cell wall destabilization, extraction, and purification. Nonetheless, this review provides future insights into enhancing the productivity of bioplastic derived from microalgae towards low-cost, large-scale, and higher productivity of PHAs.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Shih-Hsin Ho; Shih-Hsin Ho; Yen Ying Lai; Ching-Nen Nathan Chen; Wei Bin Lu; Jo Shu Chang;pmid: 24796513
A recently isolated thermotolerant microalga Desmodesmus sp. F2 has the traits of becoming potential biodiesel feedstock, such as high growth rate, high lipid content, and quick precipitation. Its overall lipid productivity was 113 mg/L/d when grown under non-optimal conditions using batch cultivation. A two-step response surface methodology was adopted to optimize its cultivation conditions. The overall lipid productivity was increased to 263 mg/L/d when the cells were grown under the optimized conditions of 6.6mM initial nitrogen level and 6 days nitrogen depletion treatment in 700 μmol/m(2)/s light intensity at 35°C using batch cultivation. Fed-batch and semi-continuous cultivations were employed to further increase its lipid productivity to 213 and 302 mg/L/d, respectively. The 302 mg/L/d is the highest overall lipid productivity of microalgae ever reported in the literature. This study provides the information required for the design and operation of photobioreactors for large scale outdoor cultivation of this species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.04.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.04.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Informa UK Limited Jia Sen Tan; Sze Ying Lee; Kit Wayne Chew; Man Kee Lam; Jun Wei Lim; Shih-Hsin Ho; Pau Loke Show;The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
Bioengineered arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21655979.2020.1711626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 328 citations 328 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Bioengineered arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21655979.2020.1711626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Yue Wang; Shuangfei Li; Hong-Wei Yen; Nanqi Ren; Akihiko Kondo; Dillirani Nagarajan; Jo Shu Chang; Jo Shu Chang; Zhangli Hu; Duu-Jong Lee; Shih-Hsin Ho;pmid: 28579363
Biobutanol is gaining more attention as a potential alternative to ethanol, and the demand for fermentative biobutanol production has renewed interest. The main challenge faced in biobutanol production is the availability of feedstock. Using conventional agricultural biomass as feedstock is controversial and less efficient, while microalgae, the third generation feedstock, are considered promising feedstock for biobutanol production due to their high growth rate and high carbohydrates content. This review is primarily focused on biobutanol production by using carbohydrate-rich microalgal feedstock. Key technologies and challenges involved in producing butanol from microalgae are discussed in detail and future directions are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2017.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biotechadv.2017.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Congyu Zhang; Fanghua Li; Shih-Hsin Ho; Wei-Hsin Chen; Duleeka Sandamali Gunarathne; Pau Loke Show;pmid: 35561822
Oxidative torrefaction is a promising way for biomass upgrading and solid biofuel production. Alkali metals are considered to be efficient activators for enhancing biofuel upgrading during the thermal reaction process. Herein, the microalga Nannochloropsis Oceanica is selected as the feedstock for assessing potassium carbonate activated effect on solid biofuel production through oxidative torrefaction. The potential of potassium carbonate on microalgal biofuel properties upgrading is deeply explored. SEM observation and BET analysis show that torrefied microalgae can be transformed from a spherical structure with wrinkles to smaller particles with larger surface areas and higher total pore volumes, implying that potassium carbonate is a promising porogen. Moreover, potassium carbonate can significantly change the DTG curve at the temperatures of 250 °C and 300 °C from one peak to two peaks, inferring that the activated effect of potassium carbonate occurs on the torrefied microalgae. 13C NMR analysis reveals that the microalgal components significantly change as the torrefaction severity increases, with the decomposition of carbohydrate and protein components. When the potassium carbonate ratio increases from 0:1 to 1:1, the graphitization degree increase from 3.065 to 1.262, along with the increase in the HHV of solid biofuel from 25.024 MJ kg-1 to 31.890 MJ kg-1. In total, this study has comprehensively revealed the activated effect of potassium carbonate on improving the properties of microalgal solid biofuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2022.113389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envres.2022.113389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Yahui, Sun; Deshen, Hu; Haixing, Chang; Shengnan, Li; Shih-Hsin, Ho;pmid: 36262000
Inhomogeneous light distribution and poor CO2 transfer capacity are two critical concerns impeding microalgal photosynthesis in practical suspended photobioreactors (PBRs). To provide valuable guidance on designing high-performance PBRs, recent progress on enhancing light and CO2 availabilities is systematically summarized in this review. Particularly, for the first time, the strategies on elevating light availability are classified and discussed from the perspectives of increasing incident light intensity, introducing internal illumination, optimizing flow field, regulating biomass concentrations, and enlarging illumination surface areas. Meanwhile, the strategies on enhancing CO2 light availability are outlined from the aspects of generating smaller bubbles, extending bubbles residence time, and facilitating CO2 dissolution using extra additives. Given the microalgal biomass production using current PBRs are still suffering from low productivity and economic feasibility, the possible future directions for PBRs implementation and development are presented. Altogether, this review is beneficial to furthering development of PBRs as a practical technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Xiao-Yue Zhang; Fengwu Bai; Fengwu Bai; Jo Shu Chang; Md. Asraful Alam; Suo-Lian Guo; Chun Wan; Shih-Hsin Ho; Xin-Qing Zhao; Xin-Qing Zhao;pmid: 25499148
Microalgae have been extensively studied for the production of various valuable products. Application of microalgae for the production of renewable energy has also received increasing attention in recent years. However, high cost of microalgal biomass harvesting is one of the bottlenecks for commercialization of microalgae-based industrial processes. Considering harvesting efficiency, operation economics and technological feasibility, flocculation is a superior method to harvest microalgae from mass culture. In this article, the latest progress of various microalgal cell harvesting methods via flocculation is reviewed with the emphasis on the current progress and prospect in environmentally friendly bio-based flocculation. Harvesting microalgae through bio-based flocculation is a promising component of the low-cost microalgal biomass production technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.11.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu246 citations 246 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.11.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Xue Li; Shengnan Li; Shih-Hsin Ho;pmid: 34774903
The boost of the greenhouse gases (GHGs, largely carbon dioxide - CO2) emissions owing to anthropogenic activity is one of the biggest global threats. Bio-CO2 emission reduction has received more and more attention as an environmentally sustainable approach. Microalgae are very popular in this regard because of excellent speed of growth, low costs of production, and resistance to extreme environments. Besides, most microalgae can undergo photosynthesis, where the CO2 and solar energy can be converted into sugar, and subsequently become biomass, providing a renewable and promising biofuel strategy with a few outstanding benefits. This review focuses on presenting CO2 sequestration by microalgae towards wastewater treatment and biodiesel production. First, the CO2 fixation mechanism by microalgae viz., sequestration and assimilation of CO2 in green microalgae as well as cyanobacteria were introduced. Besides, factors affecting CO2 sequestration in microalgae, containing microalgae species and cultivation conditions, such as light condition, photobioreactor, configuration, pH, CO2 concentration, temperature, and medium composition, were then comprehensively discussed. Special attention was given to the production of biodiesel as third-generation biofuel from various wastewater (CO2 biofixation), including processing steps of biodiesel production by microalgae, biodiesel production from wastewater, and improved methods. Furthermore, current life cycle assessment (LCA) and techno-economic analysis (TEA) used in biodiesel production were discussed. Finally, the research challenges and specific prospects were considered. Taken together, this review provides useful and updated information to facilitate the development of microalgal "green chemistry" and "environmental sustainability".
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.132863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2021.132863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Youping Xie; Xurui Zhao; Jo Shu Chang; Jianfeng Chen; Shen Ying; Baobei Wang; Xuqiu Yang; Shih-Hsin Ho;pmid: 28813692
The type and concentration of inorganic carbon and nitrogen sources were manipulated to improve cell growth and lutein productivity of Desmodesmus sp. F51. Using nitrate as nitrogen source, the better cell growth and lutein accumulation were obtained under 2.5% CO2 supply when compared to the addition of NaHCO3 or Na2CO3. To solve the pH variation problem of ammonium consumption, the strategy of using dual carbon sources (NaHCO3 and CO2) was explored. A lower bicarbonate-C: ammonium-N ratio led to a lower culture pH as well as lower lutein productivity, but significantly enhanced the auto-flocculation efficiency of the microalgal cells. The highest biomass productivity (939mg/L/d) and lutein productivity (5.22mg/L/d) were obtained when the bicarbonate-C/ammonium-N ratio and ammonium-N concentration were 1:1 and 150mg/L, respectively. The lutein productivity of 5.22mg/L/d is the highest value ever reported in the literature using batch phototrophic cultivation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Shih-Hsin Ho; Mathieu Pétrissans; Congyu Zhang; Wei Hsin Chen; Wei Hsin Chen; Wei Hsin Chen; Anélie Pétrissans; Wu Yang;Biomass structure and reactivity of torrefied products are a matter of great concern to explore the fuelproperties, pyrolysis characteristics, and microcosmic appearance, and life cycle assessment (LCA) is ofgreat importance to evaluate the environmental impact of the torrefaction process. This study in-vestigates the properties and microstructure of torrefied rice straw, including fuel properties, pyrolysiskinetics, crystallinity, surface functional group changes, and microscopic appearance. Results show that agood linear distribution appears between the comprehensive pyrolysis index (CPI) and atomic H/C ratio,and CPI and crystallinity index (CrI). Fourier transform infrared spectra depict dehydration, decarbox-ylation, and decarbonylation occur during the torrefaction process. The scanning electron microscopeimages illustrated the surface characteristics are closely related to the release of volatiles during thetorrefaction process. The solid 13 C NMR spectra of raw and torrefied rice straw reflect that the aromaticitywill improve with increasing the torrefaction severity. For LCA analysis, the environmental impact of thetorrefaction process shows a positive correlation with torrefaction temperature, and the global warmingpotential is in the range of 0.1469e0.2707 kg CO2 emission. This study is meaningful for the evaluation offuel properties and torrefaction performance as well as microstructure and reactivity of torrefied ricestraw.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Kuan Shiong Khoo; Shih-Hsin Ho; Guo Yong Yew; Pau Loke Show; Jun Wei Roy Chong; Jun Wei Roy Chong;pmid: 34052610
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyester which are biosynthesized from the intracellular cells of microalgae through the cultivation of organic food waste medium. Before cultivation process, food waste must undergo several pre-treatment techniques such as chemical, biological, physical or mechanical in order to solubilize complex food waste matter into simpler micro- and macronutrients in which allow bio-valorisation of microalgae and food waste compound during the cultivation process. This work reviews four microalgae genera namely Chlamydomonas, Chlorella, Spirulina, and Botryococcus, are selected as suitable species due to rapid growth rate, minimal nutrient requirement, greater adaptability and flexibility prior to lower the overall production cost and maximized the production of PHAs. This study also focuses on the different mode of cultivation for the accumulation of PHAs followed by cell wall destabilization, extraction, and purification. Nonetheless, this review provides future insights into enhancing the productivity of bioplastic derived from microalgae towards low-cost, large-scale, and higher productivity of PHAs.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Shih-Hsin Ho; Shih-Hsin Ho; Yen Ying Lai; Ching-Nen Nathan Chen; Wei Bin Lu; Jo Shu Chang;pmid: 24796513
A recently isolated thermotolerant microalga Desmodesmus sp. F2 has the traits of becoming potential biodiesel feedstock, such as high growth rate, high lipid content, and quick precipitation. Its overall lipid productivity was 113 mg/L/d when grown under non-optimal conditions using batch cultivation. A two-step response surface methodology was adopted to optimize its cultivation conditions. The overall lipid productivity was increased to 263 mg/L/d when the cells were grown under the optimized conditions of 6.6mM initial nitrogen level and 6 days nitrogen depletion treatment in 700 μmol/m(2)/s light intensity at 35°C using batch cultivation. Fed-batch and semi-continuous cultivations were employed to further increase its lipid productivity to 213 and 302 mg/L/d, respectively. The 302 mg/L/d is the highest overall lipid productivity of microalgae ever reported in the literature. This study provides the information required for the design and operation of photobioreactors for large scale outdoor cultivation of this species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.04.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.04.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Informa UK Limited Jia Sen Tan; Sze Ying Lee; Kit Wayne Chew; Man Kee Lam; Jun Wei Lim; Shih-Hsin Ho; Pau Loke Show;The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
Bioengineered arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21655979.2020.1711626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 328 citations 328 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Bioengineered arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21655979.2020.1711626&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu