- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 LithuaniaPublisher:MDPI AG Catarina NS Silva; Justas Dainys; Sean Simmons; Vincentas Vienožinskis; Asta Audzijonyte;Citizen science platforms, social media and smart phone applications enable the collection of large amounts of georeferenced images. This provides a huge opportunity in biodiversity and ecological research, but also creates challenges for efficient data handling and processing. Recreational and small-scale fisheries is one of the fields that could be revolutionised by efficient, widely accessible and machine learning-based processing of georeferenced images. Most non-commercial inland and coastal fisheries are considered data poor and are rarely assessed, yet they provide multiple societal benefits and can have substantial ecological impacts. Given that large quantities of georeferenced fish images are being collected by fishers every day, artificial intelligence (AI) and computer vision applications offer a great opportunity to automate their analyses by providing species identification, and potentially also fish size estimation. This would deliver data needed for fisheries management and fisher engagement. To date, however, many AI image analysis applications in fisheries are focused on the commercial sector, limited to specific species or settings, and are not publicly available. In addition, using AI and computer vision tools often requires a strong background in programming. In this study, we aim to facilitate broader use of computer vision tools in fisheries and ecological research by compiling an open-source user friendly and modular framework for large-scale image storage, handling, annotation and automatic classification, using cost- and labour-efficient methodologies. The tool is based on TensorFlow Lite Model Maker library, and includes data augmentation and transfer learning techniques applied to different convolutional neural network models. We demonstrate the potential application of this framework using a small example dataset of fish images taken through a recreational fishing smartphone application. The framework presented here can be used to develop region-specific species identification models, which could potentially be combined into a larger hierarchical model.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United Kingdom, Australia, AustraliaPublisher:Wiley Publicly fundedFunded by:ARC | Discovery Projects - Gran..., EC | ClimeFishARC| Discovery Projects - Grant ID: DP170104240 ,EC| ClimeFishAsta Audzijonyte; Diego R. Barneche; Alan R. Baudron; Jonathan Belmaker; Timothy D. Clark; C. Tara Marshall; John R. Morrongiello; Itai van Rijn;doi: 10.1111/geb.12847
handle: 11343/284821 , 2164/13275
AbstractAimThe negative correlation between temperature and body size of ectothermic animals (broadly known as the temperature‐size rule or TSR) is a widely observed pattern, especially in aquatic organisms. Studies have claimed that the TSR arises due to decreased oxygen solubility and increasing metabolic costs at warmer temperatures, whereby oxygen supply to a large body becomes increasingly difficult. However, mixed empirical evidence has led to a controversy about the mechanisms affecting species’ size and performance under different temperatures. We review the main competing genetic, physiological and ecological explanations for the TSR and suggest a roadmap to move the field forward.LocationGlobal.TaxaAquatic ectotherms.Time period1980–present.ResultsWe show that current studies cannot discriminate among alternative hypotheses and none of the hypotheses can explain all TSR‐related observations. To resolve this impasse, we need experiments and field‐sampling programmes that specifically compare alternative mechanisms and formally consider energetics related to growth costs, oxygen supply and behaviour. We highlight the distinction between evolutionary and plastic mechanisms, and suggest that the oxygen limitation debate should separate processes operating on short, decadal and millennial time‐scales.ConclusionsDespite decades of research, we remain uncertain whether the TSR is an adaptive response to temperature‐related physiological (enzyme activity) or ecological changes (food, predation and other mortality), or a response to constraints operating at a cellular level (oxygen supply and associated costs). To make progress, ecologists, physiologists, modellers and geneticists should work together to develop a cross‐disciplinary research programme that integrates theory and data, explores time‐scales over which the TSR operates, and assesses limits to adaptation or plasticity. We identify four questions for such a programme. Answering these questions is crucial given the widespread impacts of climate change and reliance of management on models that are highly dependent on accurate representation of ecological and physiological responses to temperature.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, IrelandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SFI | Thermal scaling: rethinki..., ARC | Discovery Projects - Gran..., IRCSFI| Thermal scaling: rethinking how temperature drives macro-ecological patterns ,ARC| Discovery Projects - Grant ID: DP170104240 ,IRCAsta Audzijonyte; Shane A. Richards; Rick D. Stuart-Smith; Gretta Pecl; Graham J. Edgar; Neville S. Barrett; Nicholas Payne; Julia L. Blanchard;Ectotherms generally shrink under experimental warming, but whether this pattern extends to wild populations is uncertain. We analysed ten million visual survey records, spanning the Australian continent and multiple decades and comprising the most common coastal reef fishes (335 species). We found that temperature indeed drives spatial and temporal changes in fish body size, but not consistently in the negative fashion expected. Around 55% of species were smaller in warmer waters (especially among small-bodied species), while 45% were bigger. The direction of a species' response to temperature through space was generally consistent with its response to temperature increase through time at any given location, suggesting that spatial trends could help forecast fish responses to long-term warming. However, temporal changes were about ten times faster than spatial trends (~4% versus ~40% body size change per 1 °C change through space and time, respectively). The rapid and variable responses of fish size to warming may herald unexpected impacts on ecosystem restructuring, with potentially greater consequences than if all species were shrinking.
The University of Du... arrow_drop_down The University of Dublin, Trinity College: TARA (Trinity's Access to Research Archive)Article . 2020Full-Text: http://hdl.handle.net/2262/94726Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2020 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2020 . Peer-reviewedData sources: Trinity's Access to Research ArchiveNature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1171-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Du... arrow_drop_down The University of Dublin, Trinity College: TARA (Trinity's Access to Research Archive)Article . 2020Full-Text: http://hdl.handle.net/2262/94726Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2020 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2020 . Peer-reviewedData sources: Trinity's Access to Research ArchiveNature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1171-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Gretta T. Pecl; Julia L. Blanchard; Barrett W. Wolfe; Samantha Twiname; Rachel Kelly; Rachel Kelly; Sean R. Tracey; Curtis Champion; Curtis Champion; Hannah E. Fogarty; Michael Oellermann; Patricia Peinado; Cecilia Villanueva; Quinn P. Fitzgibbon; Asta Audzijonyte; Alistair J. Hobday; Alistair J. Hobday; Kieran J. Murphy; Thibaut de la Chesnais; Thibaut de la Chesnais;doi: 10.1111/ecog.04996
Climate‐driven species redistribution is pervasive and accelerating, yet the complex mechanisms at play remain poorly understood. The implications of large‐scale species redistribution for natural systems and human societies have resulted in a large number of studies exploring the effects on individual species and ecological communities worldwide. Whilst many studies have investigated discrete components of species redistribution, the integration required for a more complete mechanistic understanding is lacking. In this paper, we provide a framework for synthesising approaches to more robustly understand and predict marine species redistributions. We conceptualise the stages and processes involved in climate‐driven species redistribution at increasing levels of biological organisation, and synthesize the laboratory, field and modelling approaches used to study redistribution related processes at individual, population and community levels. We then summarise links between scales of biological organisation and methodological approaches in a hierarchical framework that represents an integrated mechanistic assessment of climate‐driven species redistributions. In a rapidly expanding field of research, this framework provides direction for: 1) guiding future research, 2) highlighting key knowledge gaps, 3) fostering data exchange and collaboration between disciplines and 4) improving shared capacity to predict and therefore, inform the proactive management of climate impacts on natural systems.
Ecography arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.04996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecography arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.04996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Lithuania, Czech Republic, Lithuania, LithuaniaPublisher:Wiley Authors: Asta Audzijonyte; Kęstutis Arbačiauskas; Carl Smith;doi: 10.1002/aqc.4001
Abstract Glacial relict crustaceans are characterized by their affinity for cold and well‐oxygenated waters and their limited dispersal ability. They occur in large, deep lakes of Northern and Central Europe and North America, with their distributions shaped by glaciation events. In many countries and especially along the southern distribution edge, glacial relict populations are declining as a result of eutrophication, global warming, and possible adverse interactions with invasive Ponto‐Caspian crustaceans. This study assessed the status of three glacial relict malacostracan species (the amphipods Monoporeia affinis and Pallaseopsis quadrispinosa and the mysid Mysis relicta) in Lithuania and modelled their abundance across environmental variables, including the presence of Ponto‐Caspian malacostracans. The results showed that M. affinis is probably extinct in the country, whereas M. relicta was found in only nine out of 16 locations from which it was previously recorded. The distribution of P. quadrispinosa also seems to be shrinking. The annual water renewal rate (P. quadrispinosa and M. relicta) and lake depth (P. quadrispinosa) were significantly and positively associated with the relative abundance of relict mysids and amphipods, but no association was found with lake size or with the presence of invasive Ponto‐Caspian crustaceans. Both species were less abundant in samples collected in the 21st century compared with the 20th century. Given the biogeographical and ecological importance of glacial relict crustaceans, their widespread declines are of concern and point to the deterioration of habitat quality, essential for other species with similar requirements. Urgent action is needed to improve water conditions and safeguard these communities. In cases where water quality improves, the reintroduction of extirpated relict populations should be considered. One example is Lake Drūkšiai, where these crustaceans became extinct during the operation of the Ignalina nuclear power plant but where conditions improved following the closure of the power plant in 2009.
Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2023Data sources: Vilnius University Institutional RepositoryAquatic Conservation Marine and Freshwater EcosystemsArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesInstitutional Repository of Nature Research CentreArticle . 2023License: CC BY NCData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aqc.4001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2023Data sources: Vilnius University Institutional RepositoryAquatic Conservation Marine and Freshwater EcosystemsArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesInstitutional Repository of Nature Research CentreArticle . 2023License: CC BY NCData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aqc.4001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Lithuania, Sweden, LithuaniaPublisher:Cold Spring Harbor Laboratory Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170104240Authors: Max Lindmark; Asta Audzijonyte; Julia L. Blanchard; Anna Gårdmark;AbstractResolving the combined effect of climate warming and exploitation in a food web context is key for predicting future biomass production, size-structure, and potential yields of marine fishes. Previous studies based on mechanistic size-based food web models have found that bottom-up processes are important drivers of size-structure and fisheries yield in changing climates. However, we know less about the joint effects of ‘bottom-up’ and physiological effects of temperature; how do temperature effects propagate from individual-level physiology through food webs and alter the size-structure of exploited species in a community? Here we assess how a species-resolved size-based food web is affected by warming through both these pathways, and by exploitation. We parameterize a dynamic size spectrum food web model inspired by the offshore Baltic Sea food web, and investigate how individual growth rates, size-structure, relative abundances of species and yields are affected by warming. The magnitude of warming is based on projections by the regional coupled model system RCA4-NEMO and the RCP 8.5 emission scenario, and we evaluate different scenarios of temperature dependence on fish physiology and resource productivity. When accounting for temperature-effects on physiology in addition to on basal productivity, projected size-at-age in 2050 increases on average for all fish species, mainly for young fish, compared to scenarios without warming. In contrast, size-at-age decreases when temperature affects resource dynamics only, and the decline is largest for young fish. Faster growth rates due to warming, however, do not always translate to larger yields, as lower resource carrying capacities with increasing temperature tend to result in declines in the abundance of larger fish and hence spawning stock biomass. These results suggest that to understand how global warming affects the size structure of fish communities, both direct metabolic effects and indirect effects of temperature via basal resources must be accounted for.
SLU publication data... arrow_drop_down Institutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.10.04.463018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Institutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.10.04.463018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Public Library of Science (PLoS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170104240Asta Audzijonyte; Gustav W. Delius; Rick D. Stuart-Smith; Camilla Novaglio; Graham J. Edgar; Neville S. Barrett; Julia L. Blanchard;The multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species’ biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3002392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3002392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190101627Authors: Henry F. Wootton; John R. Morrongiello; Thomas Schmitt; Asta Audzijonyte;AbstractFish and other ectotherms living in warmer waters often grow faster as juveniles, mature earlier, but become smaller adults. Known as the temperature‐size rule (TSR), this pattern is commonly attributed to higher metabolism in warmer waters, leaving fewer resources for growth. An alternative explanation focuses on growth and reproduction trade‐offs across temperatures. We tested these hypotheses by measuring growth, maturation, metabolism and reproductive allocation from zebrafish populations kept at 26 and 30°C across six generations. Zebrafish growth and maturation followed TSR expectations but were not explained by baseline metabolic rate, which converged between temperature treatments after a few generations. Rather, we found that females at 30°C allocated more to reproduction, especially when maturing at the smallest sizes. We show that elevated temperatures do not necessarily increase baseline metabolism if sufficient acclimation is allowed and call for an urgent revision of modelling assumptions used to predict population and ecosystem responses to warming.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/11343/308550Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/11343/308550Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190101627Authors: Henry F. Wootton; Asta Audzijonyte; John Morrongiello;Significance The synergistic impacts of rapid climatic warming and fisheries harvest are threatening the sustainability of wild fisheries. Their collective impact on fish recruitment—a key process underpinning stock abundance—remains poorly understood. We experimentally exposed fish populations to realistic warming and fishing-selection regimes over multiple generations and found that warmed populations experienced a severe decline in recruitment rate. This warming-induced decline was exacerbated by size-selective fishery harvest. Once warming and size-selective fishing were relaxed, recruitment rates rapidly recovered. Our results suggest that synergistic impacts of fishing and warming can have delayed effects on stock resilience and that preserving fish body size diversity will help to increase their resilience to global warming.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2100300118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2100300118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 LithuaniaPublisher:MDPI AG Catarina NS Silva; Justas Dainys; Sean Simmons; Vincentas Vienožinskis; Asta Audzijonyte;Citizen science platforms, social media and smart phone applications enable the collection of large amounts of georeferenced images. This provides a huge opportunity in biodiversity and ecological research, but also creates challenges for efficient data handling and processing. Recreational and small-scale fisheries is one of the fields that could be revolutionised by efficient, widely accessible and machine learning-based processing of georeferenced images. Most non-commercial inland and coastal fisheries are considered data poor and are rarely assessed, yet they provide multiple societal benefits and can have substantial ecological impacts. Given that large quantities of georeferenced fish images are being collected by fishers every day, artificial intelligence (AI) and computer vision applications offer a great opportunity to automate their analyses by providing species identification, and potentially also fish size estimation. This would deliver data needed for fisheries management and fisher engagement. To date, however, many AI image analysis applications in fisheries are focused on the commercial sector, limited to specific species or settings, and are not publicly available. In addition, using AI and computer vision tools often requires a strong background in programming. In this study, we aim to facilitate broader use of computer vision tools in fisheries and ecological research by compiling an open-source user friendly and modular framework for large-scale image storage, handling, annotation and automatic classification, using cost- and labour-efficient methodologies. The tool is based on TensorFlow Lite Model Maker library, and includes data augmentation and transfer learning techniques applied to different convolutional neural network models. We demonstrate the potential application of this framework using a small example dataset of fish images taken through a recreational fishing smartphone application. The framework presented here can be used to develop region-specific species identification models, which could potentially be combined into a larger hierarchical model.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142114324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United Kingdom, Australia, AustraliaPublisher:Wiley Publicly fundedFunded by:ARC | Discovery Projects - Gran..., EC | ClimeFishARC| Discovery Projects - Grant ID: DP170104240 ,EC| ClimeFishAsta Audzijonyte; Diego R. Barneche; Alan R. Baudron; Jonathan Belmaker; Timothy D. Clark; C. Tara Marshall; John R. Morrongiello; Itai van Rijn;doi: 10.1111/geb.12847
handle: 11343/284821 , 2164/13275
AbstractAimThe negative correlation between temperature and body size of ectothermic animals (broadly known as the temperature‐size rule or TSR) is a widely observed pattern, especially in aquatic organisms. Studies have claimed that the TSR arises due to decreased oxygen solubility and increasing metabolic costs at warmer temperatures, whereby oxygen supply to a large body becomes increasingly difficult. However, mixed empirical evidence has led to a controversy about the mechanisms affecting species’ size and performance under different temperatures. We review the main competing genetic, physiological and ecological explanations for the TSR and suggest a roadmap to move the field forward.LocationGlobal.TaxaAquatic ectotherms.Time period1980–present.ResultsWe show that current studies cannot discriminate among alternative hypotheses and none of the hypotheses can explain all TSR‐related observations. To resolve this impasse, we need experiments and field‐sampling programmes that specifically compare alternative mechanisms and formally consider energetics related to growth costs, oxygen supply and behaviour. We highlight the distinction between evolutionary and plastic mechanisms, and suggest that the oxygen limitation debate should separate processes operating on short, decadal and millennial time‐scales.ConclusionsDespite decades of research, we remain uncertain whether the TSR is an adaptive response to temperature‐related physiological (enzyme activity) or ecological changes (food, predation and other mortality), or a response to constraints operating at a cellular level (oxygen supply and associated costs). To make progress, ecologists, physiologists, modellers and geneticists should work together to develop a cross‐disciplinary research programme that integrates theory and data, explores time‐scales over which the TSR operates, and assesses limits to adaptation or plasticity. We identify four questions for such a programme. Answering these questions is crucial given the widespread impacts of climate change and reliance of management on models that are highly dependent on accurate representation of ecological and physiological responses to temperature.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticleLicense: Wiley Online Library User AgreementData sources: SygmaGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalThe University of Melbourne: Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, IrelandPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SFI | Thermal scaling: rethinki..., ARC | Discovery Projects - Gran..., IRCSFI| Thermal scaling: rethinking how temperature drives macro-ecological patterns ,ARC| Discovery Projects - Grant ID: DP170104240 ,IRCAsta Audzijonyte; Shane A. Richards; Rick D. Stuart-Smith; Gretta Pecl; Graham J. Edgar; Neville S. Barrett; Nicholas Payne; Julia L. Blanchard;Ectotherms generally shrink under experimental warming, but whether this pattern extends to wild populations is uncertain. We analysed ten million visual survey records, spanning the Australian continent and multiple decades and comprising the most common coastal reef fishes (335 species). We found that temperature indeed drives spatial and temporal changes in fish body size, but not consistently in the negative fashion expected. Around 55% of species were smaller in warmer waters (especially among small-bodied species), while 45% were bigger. The direction of a species' response to temperature through space was generally consistent with its response to temperature increase through time at any given location, suggesting that spatial trends could help forecast fish responses to long-term warming. However, temporal changes were about ten times faster than spatial trends (~4% versus ~40% body size change per 1 °C change through space and time, respectively). The rapid and variable responses of fish size to warming may herald unexpected impacts on ecosystem restructuring, with potentially greater consequences than if all species were shrinking.
The University of Du... arrow_drop_down The University of Dublin, Trinity College: TARA (Trinity's Access to Research Archive)Article . 2020Full-Text: http://hdl.handle.net/2262/94726Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2020 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2020 . Peer-reviewedData sources: Trinity's Access to Research ArchiveNature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1171-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Du... arrow_drop_down The University of Dublin, Trinity College: TARA (Trinity's Access to Research Archive)Article . 2020Full-Text: http://hdl.handle.net/2262/94726Data sources: Bielefeld Academic Search Engine (BASE)Trinity's Access to Research ArchiveArticle . 2020 . Peer-reviewedData sources: Trinity's Access to Research ArchiveTrinity's Access to Research ArchiveArticle . 2020 . Peer-reviewedData sources: Trinity's Access to Research ArchiveNature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1171-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Wiley Gretta T. Pecl; Julia L. Blanchard; Barrett W. Wolfe; Samantha Twiname; Rachel Kelly; Rachel Kelly; Sean R. Tracey; Curtis Champion; Curtis Champion; Hannah E. Fogarty; Michael Oellermann; Patricia Peinado; Cecilia Villanueva; Quinn P. Fitzgibbon; Asta Audzijonyte; Alistair J. Hobday; Alistair J. Hobday; Kieran J. Murphy; Thibaut de la Chesnais; Thibaut de la Chesnais;doi: 10.1111/ecog.04996
Climate‐driven species redistribution is pervasive and accelerating, yet the complex mechanisms at play remain poorly understood. The implications of large‐scale species redistribution for natural systems and human societies have resulted in a large number of studies exploring the effects on individual species and ecological communities worldwide. Whilst many studies have investigated discrete components of species redistribution, the integration required for a more complete mechanistic understanding is lacking. In this paper, we provide a framework for synthesising approaches to more robustly understand and predict marine species redistributions. We conceptualise the stages and processes involved in climate‐driven species redistribution at increasing levels of biological organisation, and synthesize the laboratory, field and modelling approaches used to study redistribution related processes at individual, population and community levels. We then summarise links between scales of biological organisation and methodological approaches in a hierarchical framework that represents an integrated mechanistic assessment of climate‐driven species redistributions. In a rapidly expanding field of research, this framework provides direction for: 1) guiding future research, 2) highlighting key knowledge gaps, 3) fostering data exchange and collaboration between disciplines and 4) improving shared capacity to predict and therefore, inform the proactive management of climate impacts on natural systems.
Ecography arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.04996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecography arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ecog.04996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Lithuania, Czech Republic, Lithuania, LithuaniaPublisher:Wiley Authors: Asta Audzijonyte; Kęstutis Arbačiauskas; Carl Smith;doi: 10.1002/aqc.4001
Abstract Glacial relict crustaceans are characterized by their affinity for cold and well‐oxygenated waters and their limited dispersal ability. They occur in large, deep lakes of Northern and Central Europe and North America, with their distributions shaped by glaciation events. In many countries and especially along the southern distribution edge, glacial relict populations are declining as a result of eutrophication, global warming, and possible adverse interactions with invasive Ponto‐Caspian crustaceans. This study assessed the status of three glacial relict malacostracan species (the amphipods Monoporeia affinis and Pallaseopsis quadrispinosa and the mysid Mysis relicta) in Lithuania and modelled their abundance across environmental variables, including the presence of Ponto‐Caspian malacostracans. The results showed that M. affinis is probably extinct in the country, whereas M. relicta was found in only nine out of 16 locations from which it was previously recorded. The distribution of P. quadrispinosa also seems to be shrinking. The annual water renewal rate (P. quadrispinosa and M. relicta) and lake depth (P. quadrispinosa) were significantly and positively associated with the relative abundance of relict mysids and amphipods, but no association was found with lake size or with the presence of invasive Ponto‐Caspian crustaceans. Both species were less abundant in samples collected in the 21st century compared with the 20th century. Given the biogeographical and ecological importance of glacial relict crustaceans, their widespread declines are of concern and point to the deterioration of habitat quality, essential for other species with similar requirements. Urgent action is needed to improve water conditions and safeguard these communities. In cases where water quality improves, the reintroduction of extirpated relict populations should be considered. One example is Lake Drūkšiai, where these crustaceans became extinct during the operation of the Ignalina nuclear power plant but where conditions improved following the closure of the power plant in 2009.
Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2023Data sources: Vilnius University Institutional RepositoryAquatic Conservation Marine and Freshwater EcosystemsArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesInstitutional Repository of Nature Research CentreArticle . 2023License: CC BY NCData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aqc.4001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2023Data sources: Vilnius University Institutional RepositoryAquatic Conservation Marine and Freshwater EcosystemsArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesInstitutional Repository of Nature Research CentreArticle . 2023License: CC BY NCData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aqc.4001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Lithuania, Sweden, LithuaniaPublisher:Cold Spring Harbor Laboratory Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170104240Authors: Max Lindmark; Asta Audzijonyte; Julia L. Blanchard; Anna Gårdmark;AbstractResolving the combined effect of climate warming and exploitation in a food web context is key for predicting future biomass production, size-structure, and potential yields of marine fishes. Previous studies based on mechanistic size-based food web models have found that bottom-up processes are important drivers of size-structure and fisheries yield in changing climates. However, we know less about the joint effects of ‘bottom-up’ and physiological effects of temperature; how do temperature effects propagate from individual-level physiology through food webs and alter the size-structure of exploited species in a community? Here we assess how a species-resolved size-based food web is affected by warming through both these pathways, and by exploitation. We parameterize a dynamic size spectrum food web model inspired by the offshore Baltic Sea food web, and investigate how individual growth rates, size-structure, relative abundances of species and yields are affected by warming. The magnitude of warming is based on projections by the regional coupled model system RCA4-NEMO and the RCP 8.5 emission scenario, and we evaluate different scenarios of temperature dependence on fish physiology and resource productivity. When accounting for temperature-effects on physiology in addition to on basal productivity, projected size-at-age in 2050 increases on average for all fish species, mainly for young fish, compared to scenarios without warming. In contrast, size-at-age decreases when temperature affects resource dynamics only, and the decline is largest for young fish. Faster growth rates due to warming, however, do not always translate to larger yields, as lower resource carrying capacities with increasing temperature tend to result in declines in the abundance of larger fish and hence spawning stock biomass. These results suggest that to understand how global warming affects the size structure of fish communities, both direct metabolic effects and indirect effects of temperature via basal resources must be accounted for.
SLU publication data... arrow_drop_down Institutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.10.04.463018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down Institutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research Centreadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.10.04.463018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Public Library of Science (PLoS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170104240Asta Audzijonyte; Gustav W. Delius; Rick D. Stuart-Smith; Camilla Novaglio; Graham J. Edgar; Neville S. Barrett; Julia L. Blanchard;The multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species’ biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3002392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3002392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190101627Authors: Henry F. Wootton; John R. Morrongiello; Thomas Schmitt; Asta Audzijonyte;AbstractFish and other ectotherms living in warmer waters often grow faster as juveniles, mature earlier, but become smaller adults. Known as the temperature‐size rule (TSR), this pattern is commonly attributed to higher metabolism in warmer waters, leaving fewer resources for growth. An alternative explanation focuses on growth and reproduction trade‐offs across temperatures. We tested these hypotheses by measuring growth, maturation, metabolism and reproductive allocation from zebrafish populations kept at 26 and 30°C across six generations. Zebrafish growth and maturation followed TSR expectations but were not explained by baseline metabolic rate, which converged between temperature treatments after a few generations. Rather, we found that females at 30°C allocated more to reproduction, especially when maturing at the smallest sizes. We show that elevated temperatures do not necessarily increase baseline metabolism if sufficient acclimation is allowed and call for an urgent revision of modelling assumptions used to predict population and ecosystem responses to warming.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/11343/308550Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/11343/308550Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190101627Authors: Henry F. Wootton; Asta Audzijonyte; John Morrongiello;Significance The synergistic impacts of rapid climatic warming and fisheries harvest are threatening the sustainability of wild fisheries. Their collective impact on fish recruitment—a key process underpinning stock abundance—remains poorly understood. We experimentally exposed fish populations to realistic warming and fishing-selection regimes over multiple generations and found that warmed populations experienced a severe decline in recruitment rate. This warming-induced decline was exacerbated by size-selective fishery harvest. Once warming and size-selective fishing were relaxed, recruitment rates rapidly recovered. Our results suggest that synergistic impacts of fishing and warming can have delayed effects on stock resilience and that preserving fish body size diversity will help to increase their resilience to global warming.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2100300118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2100300118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu