- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Royal Society of Chemistry (RSC) Jürgen Popp; Jürgen Popp; Susan E. Trumbore; Stefan Hanf; Robert Keiner; Torsten Frosch; Torsten Frosch; Sarah Fischer; Henrik Hartmann;doi: 10.1039/c5an00402k
pmid: 26016682
CERS monitoring of RQ values enables the analysis of nutrition shifts in trees in response to environmental stress.
The Analyst arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5an00402k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Analyst arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5an00402k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Germany, Germany, Italy, FinlandPublisher:Springer Science and Business Media LLC Funded by:EC | SEDALEC| SEDALGiovanni Forzieri; Marco Girardello; Guido Ceccherini; Jonathan Spinoni; Luc Feyen; Henrik Hartmann; Pieter S. A. Beck; Gustau Camps-Valls; Gherado Chirici; Achille Mauri; Alessandro Cescatti;pmid: 33623030
pmc: PMC7902618
AbstractForest disturbance regimes are expected to intensify as Earth’s climate changes. Quantifying forest vulnerability to disturbances and understanding the underlying mechanisms is crucial to develop mitigation and adaptation strategies. However, observational evidence is largely missing at regional to continental scales. Here, we quantify the vulnerability of European forests to fires, windthrows and insect outbreaks during the period 1979–2018 by integrating machine learning with disturbance data and satellite products. We show that about 33.4 billion tonnes of forest biomass could be seriously affected by these disturbances, with higher relative losses when exposed to windthrows (40%) and fires (34%) compared to insect outbreaks (26%). The spatial pattern in vulnerability is strongly controlled by the interplay between forest characteristics and background climate. Hotspot regions for vulnerability are located at the borders of the climate envelope, in both southern and northern Europe. There is a clear trend in overall forest vulnerability that is driven by a warming-induced reduction in plant defence mechanisms to insect outbreaks, especially at high latitudes.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-21399-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 206 citations 206 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-21399-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, Germany, South AfricaPublisher:Wiley Funded by:FWF | Forest disturbance in a c...FWF| Forest disturbance in a changing worldDevin W. Goodsman; Markus Kautz; Jianbei Huang; Amy M. Trowbridge; Amy M. Trowbridge; Kenneth F. Raffa; Dineshkumar Kandasamy; Henry D. Adams; Jonathan Gershenzon; Arjan J. H. Meddens; Almuth Hammerbacher; Almuth Hammerbacher; Henrik Hartmann; Rupert Seidl; Chonggang Xu;SummaryDrought has promoted large‐scale, insect‐induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on‐going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade‐off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer‐bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large‐scale vegetation models, the under‐representation of insect‐induced tree mortality.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3p02x5v6Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2263/73819Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 155 citations 155 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3p02x5v6Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2263/73819Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Germany, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | COLLABORATIVE RESEARCH: E..., NSF | CNH-L: Revealing the Hid..., NSF | Collaborative Research: ... +1 projectsNSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,NSF| CNH-L: Revealing the Hidden Ecoclimate Teleconnections Between Forest and Agriculture in the U.S. Enables Novel Governance Strategies for a Telecoupled World ,NSF| Collaborative Research: How to live on a (carbon and water) budget: Tree investment in chemical defenses across a gradient of physiological drought stress ,NSF| MSA- Will Ongoing Tree Loss Alter Connectivity Among NEON Domains: Evaluating Detectability of Ecoclimate Teleconnections to Enable Use of NEON DataWilliam M. Hammond; A. Park Williams; John T. Abatzoglou; Henry D. Adams; Tamir Klein; Rosana López; Cuauhtémoc Sáenz-Romero; Henrik Hartmann; David D. Breshears; Craig D. Allen;pmid: 35383157
pmc: PMC8983702
AbstractEarth’s forests face grave challenges in the Anthropocene, including hotter droughts increasingly associated with widespread forest die-off events. But despite the vital importance of forests to global ecosystem services, their fates in a warming world remain highly uncertain. Lacking is quantitative determination of commonality in climate anomalies associated with pulses of tree mortality—from published, field-documented mortality events—required for understanding the role of extreme climate events in overall global tree die-off patterns. Here we established a geo-referenced global database documenting climate-induced mortality events spanning all tree-supporting biomes and continents, from 154 peer-reviewed studies since 1970. Our analysis quantifies a global “hotter-drought fingerprint” from these tree-mortality sites—effectively a hotter and drier climate signal for tree mortality—across 675 locations encompassing 1,303 plots. Frequency of these observed mortality-year climate conditions strongly increases nonlinearly under projected warming. Our database also provides initial footing for further community-developed, quantitative, ground-based monitoring of global tree mortality.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/2459p914Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-29289-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 321 citations 321 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/2459p914Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-29289-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, Germany, GermanyPublisher:American Geophysical Union (AGU) Funded by:EC | XAIDA, DFGEC| XAIDA ,DFGMiguel D. Mahecha; Ana Bastos; Friedrich J. Bohn; Nico Eisenhauer; Hannes Feilhauer; Thomas Hickler; Heike Kalesse‐Los; Mirco Migliavacca; Friederike E. L. Otto; Jian Peng; Sebastian Sippel; Ina Tegen; Alexandra Weigelt; Manfred Wendisch; Christian Wirth; Djamil Al‐Halbouni; Hartwig Deneke; Daniel Doktor; Susanne Dunker; Grégory Duveiller; André Ehrlich; Andreas Foth; Almudena García‐García; Carlos A. Guerra; Claudia Guimarães‐Steinicke; Henrik Hartmann; Silvia Henning; Hartmut Herrmann; Pin-hsin Hu; Chaonan Ji; Teja Kattenborn; Nina Kolleck; Marlene Kretschmer; Ingolf Kühn; Marie Luise Luttkus; Maximilian Maahn; Milena Mönks; Karin Mora; Mira L. Pöhlker; Markus Reichstein; Nadja Rüger; Beatriz Sánchez‐Parra; Michael Schäfer; Frank Stratmann; Matthias Tesche; Birgit Wehner; Sebastian Wieneke; Alexander J. Winkler; Sophie Wolf; Sönke Zaehle; Jakob Zscheischler; Johannes Quaas;handle: 10044/1/112637
AbstractClimate extremes are on the rise. Impacts of extreme climate and weather events on ecosystem services and ultimately human well‐being can be partially attenuated by the organismic, structural, and functional diversity of the affected land surface. However, the ongoing transformation of terrestrial ecosystems through intensified exploitation and management may put this buffering capacity at risk. Here, we summarize the evidence that reductions in biodiversity can destabilize the functioning of ecosystems facing climate extremes. We then explore if impaired ecosystem functioning could, in turn, exacerbate climate extremes. We argue that only a comprehensive approach, incorporating both ecological and hydrometeorological perspectives, enables us to understand and predict the entire feedback system between altered biodiversity and climate extremes. This ambition, however, requires a reformulation of current research priorities to emphasize the bidirectional effects that link ecology and atmospheric processes.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/112637Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/258694Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef003963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/112637Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/258694Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef003963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:American Association for the Advancement of Science (AAAS) Authors: Klein, Tamir; Hartmann, Henrik;pmid: 30442795
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav6508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav6508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Wiley Hongyan Liu; Chongyang Xu; Craig D. Allen; Henrik Hartmann; Xiaohua Wei; Dan Yakir; Xiuchen Wu; Pengtao Yu;doi: 10.1111/gcb.16059
pmid: 34953175
AbstractDrylands cover more than 40% of Earth's land surface and occur at the margin of forest distributions due to the limited availability of water for tree growth. Recent elevated temperature and low precipitation have driven greater forest declines and pulses of tree mortality on dryland sites compared to humid sites, particularly in temperate Eurasia and North America. Afforestation of dryland areas has been widely implemented and is expected to increase in many drylands globally to enhance carbon sequestration and benefits to the human environment, but the interplay of sometimes conflicting afforestation outcomes has not been formally evaluated yet. Most previous studies point to conflicts between additional forest area and water consumption, in particular water yield and soil conservation/desalinization in drylands, but were generally confined to local and regional scales. Our global synthesis demonstrates that additional tree cover can amplify water consumption through a nonlinear increase in evapotranspiration—depending on tree species, age, and structure—which will be further intensified by future climate change. In this review we identify substantial knowledge gaps in addressing the dryland afforestation dilemma, where there are trade‐offs with planted forests between increased availability of some resources and benefits to human habitats versus the depletion of other resources that are required for sustainable development of drylands. Here we propose a method of addressing comprehensive vegetation carrying capacity, based on regulating the distribution and structure of forest plantations to better deal with these trade‐offs in forest multifunctionality. We also recommend new priority research topics for dryland afforestation, including: responses and feedbacks of dryland forests to climate change; shifts in the ratio of ecosystem ET to tree cover; assessing the role of scale of afforestation in influencing the trade‐offs of dryland afforestation; and comprehensive modeling of the multifunctionality of dryland forests, including both ecophysiological and socioeconomic aspects, under a changing climate.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Oxford University Press (OUP) Authors: Hartmann, H.; McDowell, N.; Trumbore, S.;pmid: 25769339
Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpv019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpv019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Song, Lin; Luo, Wentao; Griffin-Nolan, Robert J.; Ma, Wang; Cai, Jiangping; Zuo, Xiaoan; Yu, Qiang; Hartmann, Henrik; Li, Mai-He; Smith, Melinda D.; Collins, Scott L.; Knapp, Alan K.; Wang, Zhengwen; Han, Xingguo;pmid: 35122840
Plant nonstructural carbohydrates (NSC) can reflect community and ecosystem responses to environmental changes such as water availability. Climate change is predicted to increase aridity and the frequency of extreme drought events in grasslands, but it is unclear how community-scale NSC will respond to drought or how such responses may vary along aridity gradients. We experimentally imposed a 4-year drought in six grasslands along a natural aridity gradient and measured the community-weighted mean of leaf soluble sugar (SSCWM) and total leaf NSC (NSCCWM) concentrations. We observed a bell-shape relationship across this gradient, where SSCWM and total NSCCWM concentrations were lowest at intermediate aridity, with this pattern driven primarily by species turnover. Drought manipulation increased both SSCWM and total NSCCWM concentrations at one moderately arid grassland but decreased total NSCCWM concentrations at one moist site. These differential responses to experimental drought depended on the relative role of species turnover and intraspecific variation in driving shifts in SSCWM and total NSCCWM concentrations. Specifically, the synergistic effects of species turnover and intraspecific variation drove the responses of leaf NSC concentrations to drought, while their opposing effects diminished the effect of drought on plant SSCWM and total NSCCWM concentrations. Plant resource strategies were more acquisitive, via higher chlorophyllCWM concentration, to offset reduced NSCCWM concentrations and net aboveground primary productivity (ANPP) with increasing aridity at more mesic sites, but more conservative (i.e., decreased plant heightCWM and ANPP) to reduce NSC consumption at drier sites. The relationship between water availability and NSCCWM concentrations may contribute to community drought resistance and improve plant viability and adaptation strategies to a changing climate.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.153589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.153589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Germany, Germany, Switzerland, GermanyPublisher:Elsevier BV Funded by:SNSF | ICOS-CH Phase 2, EC | VOCOSNSF| ICOS-CH Phase 2 ,EC| VOCOSchuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T. E. E.; Hauck, M.; Hajek, P.; Hartmann, H.; Hiltbrunner, E.; Hoch, G.; Holloway-Phillips, M.; Körner, C.; Larysch, E.; Lübbe, T.; Nelson, D. B.; Rammig, A.; Rigling, A.; Rose, L.; Ruehr, N. K.; Schumann, K.; Weiser, F.; Werner, C.; Wohlgemuth, T.; Zang, C. S.; Kahmen, A.;In 2018, Central Europe experienced one of the most severe and long-lasting summer drought and heat wave ever recorded. Before 2018, the 2003 millennial drought was often invoked as the example of a “hotter drought”, and was classified as the most severe event in Europe for the last 500 years. First insights now confirm that the 2018 drought event was climatically more extreme and had a greater impact on forest ecosystems of Austria, Germany and Switzerland than the 2003 drought. Across this region, mean growing season air temperature from April to October was more than 3.3°C above the long-term average, and 1.2 °C warmer than in 2003. Here, we present a first impact assessment of the severe 2018 summer drought and heatwave on Central European forests. In response to the 2018 event, most ecologically and economically important tree species in temperate forests of Austria, Germany and Switzerland showed severe signs of drought stress. These symptoms included exceptionally low foliar water potentials crossing the threshold for xylem hydraulic failure in many species and observations of widespread leaf discoloration and premature leaf shedding. As a result of the extreme drought stress, the 2018 event caused unprecedented drought-induced tree mortality in many species throughout the region. Moreover, unexpectedly strong drought-legacy effects were detected in 2019. This implies that the physiological recovery of trees was impaired after the 2018 drought event, leaving them highly vulnerable to secondary drought impacts such as insect or fungal pathogen attacks. As a consequence, mortality of trees triggered by the 2018 events is likely to continue for several years. Our assessment indicates that many common temperate European forest tree species are more vulnerable to extreme summer drought and heat waves than previously thought. As drought and heat events are likely to occur more frequently with the progression of climate change, temperate European forests might approach the point for a substantial ecological and economic transition. Our assessment also highlights the urgent need for a pan-European ground-based monitoring network suited to track individual tree mortality, supported by remote sensing products with high spatial and temporal resolution to track, analyse and forecast these transitions. Basic and Applied Ecology, 45 ISSN:1439-1791 ISSN:1618-0089
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/174420Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Basic and Applied EcologyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.baae.2020.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 644 citations 644 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/174420Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Basic and Applied EcologyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.baae.2020.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Royal Society of Chemistry (RSC) Jürgen Popp; Jürgen Popp; Susan E. Trumbore; Stefan Hanf; Robert Keiner; Torsten Frosch; Torsten Frosch; Sarah Fischer; Henrik Hartmann;doi: 10.1039/c5an00402k
pmid: 26016682
CERS monitoring of RQ values enables the analysis of nutrition shifts in trees in response to environmental stress.
The Analyst arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5an00402k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Analyst arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c5an00402k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Germany, Germany, Italy, FinlandPublisher:Springer Science and Business Media LLC Funded by:EC | SEDALEC| SEDALGiovanni Forzieri; Marco Girardello; Guido Ceccherini; Jonathan Spinoni; Luc Feyen; Henrik Hartmann; Pieter S. A. Beck; Gustau Camps-Valls; Gherado Chirici; Achille Mauri; Alessandro Cescatti;pmid: 33623030
pmc: PMC7902618
AbstractForest disturbance regimes are expected to intensify as Earth’s climate changes. Quantifying forest vulnerability to disturbances and understanding the underlying mechanisms is crucial to develop mitigation and adaptation strategies. However, observational evidence is largely missing at regional to continental scales. Here, we quantify the vulnerability of European forests to fires, windthrows and insect outbreaks during the period 1979–2018 by integrating machine learning with disturbance data and satellite products. We show that about 33.4 billion tonnes of forest biomass could be seriously affected by these disturbances, with higher relative losses when exposed to windthrows (40%) and fires (34%) compared to insect outbreaks (26%). The spatial pattern in vulnerability is strongly controlled by the interplay between forest characteristics and background climate. Hotspot regions for vulnerability are located at the borders of the climate envelope, in both southern and northern Europe. There is a clear trend in overall forest vulnerability that is driven by a warming-induced reduction in plant defence mechanisms to insect outbreaks, especially at high latitudes.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-21399-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 206 citations 206 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2021Data sources: Flore (Florence Research Repository)HELDA - Digital Repository of the University of HelsinkiArticle . 2021 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-21399-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, Germany, South AfricaPublisher:Wiley Funded by:FWF | Forest disturbance in a c...FWF| Forest disturbance in a changing worldDevin W. Goodsman; Markus Kautz; Jianbei Huang; Amy M. Trowbridge; Amy M. Trowbridge; Kenneth F. Raffa; Dineshkumar Kandasamy; Henry D. Adams; Jonathan Gershenzon; Arjan J. H. Meddens; Almuth Hammerbacher; Almuth Hammerbacher; Henrik Hartmann; Rupert Seidl; Chonggang Xu;SummaryDrought has promoted large‐scale, insect‐induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on‐going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade‐off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer‐bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large‐scale vegetation models, the under‐representation of insect‐induced tree mortality.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3p02x5v6Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2263/73819Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 155 citations 155 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/3p02x5v6Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/2263/73819Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Germany, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | COLLABORATIVE RESEARCH: E..., NSF | CNH-L: Revealing the Hid..., NSF | Collaborative Research: ... +1 projectsNSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,NSF| CNH-L: Revealing the Hidden Ecoclimate Teleconnections Between Forest and Agriculture in the U.S. Enables Novel Governance Strategies for a Telecoupled World ,NSF| Collaborative Research: How to live on a (carbon and water) budget: Tree investment in chemical defenses across a gradient of physiological drought stress ,NSF| MSA- Will Ongoing Tree Loss Alter Connectivity Among NEON Domains: Evaluating Detectability of Ecoclimate Teleconnections to Enable Use of NEON DataWilliam M. Hammond; A. Park Williams; John T. Abatzoglou; Henry D. Adams; Tamir Klein; Rosana López; Cuauhtémoc Sáenz-Romero; Henrik Hartmann; David D. Breshears; Craig D. Allen;pmid: 35383157
pmc: PMC8983702
AbstractEarth’s forests face grave challenges in the Anthropocene, including hotter droughts increasingly associated with widespread forest die-off events. But despite the vital importance of forests to global ecosystem services, their fates in a warming world remain highly uncertain. Lacking is quantitative determination of commonality in climate anomalies associated with pulses of tree mortality—from published, field-documented mortality events—required for understanding the role of extreme climate events in overall global tree die-off patterns. Here we established a geo-referenced global database documenting climate-induced mortality events spanning all tree-supporting biomes and continents, from 154 peer-reviewed studies since 1970. Our analysis quantifies a global “hotter-drought fingerprint” from these tree-mortality sites—effectively a hotter and drier climate signal for tree mortality—across 675 locations encompassing 1,303 plots. Frequency of these observed mortality-year climate conditions strongly increases nonlinearly under projected warming. Our database also provides initial footing for further community-developed, quantitative, ground-based monitoring of global tree mortality.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/2459p914Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-29289-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 321 citations 321 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/2459p914Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Göttingen Research Online PublicationsArticle . 2023Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-29289-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, Germany, GermanyPublisher:American Geophysical Union (AGU) Funded by:EC | XAIDA, DFGEC| XAIDA ,DFGMiguel D. Mahecha; Ana Bastos; Friedrich J. Bohn; Nico Eisenhauer; Hannes Feilhauer; Thomas Hickler; Heike Kalesse‐Los; Mirco Migliavacca; Friederike E. L. Otto; Jian Peng; Sebastian Sippel; Ina Tegen; Alexandra Weigelt; Manfred Wendisch; Christian Wirth; Djamil Al‐Halbouni; Hartwig Deneke; Daniel Doktor; Susanne Dunker; Grégory Duveiller; André Ehrlich; Andreas Foth; Almudena García‐García; Carlos A. Guerra; Claudia Guimarães‐Steinicke; Henrik Hartmann; Silvia Henning; Hartmut Herrmann; Pin-hsin Hu; Chaonan Ji; Teja Kattenborn; Nina Kolleck; Marlene Kretschmer; Ingolf Kühn; Marie Luise Luttkus; Maximilian Maahn; Milena Mönks; Karin Mora; Mira L. Pöhlker; Markus Reichstein; Nadja Rüger; Beatriz Sánchez‐Parra; Michael Schäfer; Frank Stratmann; Matthias Tesche; Birgit Wehner; Sebastian Wieneke; Alexander J. Winkler; Sophie Wolf; Sönke Zaehle; Jakob Zscheischler; Johannes Quaas;handle: 10044/1/112637
AbstractClimate extremes are on the rise. Impacts of extreme climate and weather events on ecosystem services and ultimately human well‐being can be partially attenuated by the organismic, structural, and functional diversity of the affected land surface. However, the ongoing transformation of terrestrial ecosystems through intensified exploitation and management may put this buffering capacity at risk. Here, we summarize the evidence that reductions in biodiversity can destabilize the functioning of ecosystems facing climate extremes. We then explore if impaired ecosystem functioning could, in turn, exacerbate climate extremes. We argue that only a comprehensive approach, incorporating both ecological and hydrometeorological perspectives, enables us to understand and predict the entire feedback system between altered biodiversity and climate extremes. This ambition, however, requires a reformulation of current research priorities to emphasize the bidirectional effects that link ecology and atmospheric processes.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/112637Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/258694Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef003963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/10044/1/112637Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/258694Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef003963&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:American Association for the Advancement of Science (AAAS) Authors: Klein, Tamir; Hartmann, Henrik;pmid: 30442795
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav6508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aav6508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Wiley Hongyan Liu; Chongyang Xu; Craig D. Allen; Henrik Hartmann; Xiaohua Wei; Dan Yakir; Xiuchen Wu; Pengtao Yu;doi: 10.1111/gcb.16059
pmid: 34953175
AbstractDrylands cover more than 40% of Earth's land surface and occur at the margin of forest distributions due to the limited availability of water for tree growth. Recent elevated temperature and low precipitation have driven greater forest declines and pulses of tree mortality on dryland sites compared to humid sites, particularly in temperate Eurasia and North America. Afforestation of dryland areas has been widely implemented and is expected to increase in many drylands globally to enhance carbon sequestration and benefits to the human environment, but the interplay of sometimes conflicting afforestation outcomes has not been formally evaluated yet. Most previous studies point to conflicts between additional forest area and water consumption, in particular water yield and soil conservation/desalinization in drylands, but were generally confined to local and regional scales. Our global synthesis demonstrates that additional tree cover can amplify water consumption through a nonlinear increase in evapotranspiration—depending on tree species, age, and structure—which will be further intensified by future climate change. In this review we identify substantial knowledge gaps in addressing the dryland afforestation dilemma, where there are trade‐offs with planted forests between increased availability of some resources and benefits to human habitats versus the depletion of other resources that are required for sustainable development of drylands. Here we propose a method of addressing comprehensive vegetation carrying capacity, based on regulating the distribution and structure of forest plantations to better deal with these trade‐offs in forest multifunctionality. We also recommend new priority research topics for dryland afforestation, including: responses and feedbacks of dryland forests to climate change; shifts in the ratio of ecosystem ET to tree cover; assessing the role of scale of afforestation in influencing the trade‐offs of dryland afforestation; and comprehensive modeling of the multifunctionality of dryland forests, including both ecophysiological and socioeconomic aspects, under a changing climate.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 61 citations 61 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Oxford University Press (OUP) Authors: Hartmann, H.; McDowell, N.; Trumbore, S.;pmid: 25769339
Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpv019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpv019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Song, Lin; Luo, Wentao; Griffin-Nolan, Robert J.; Ma, Wang; Cai, Jiangping; Zuo, Xiaoan; Yu, Qiang; Hartmann, Henrik; Li, Mai-He; Smith, Melinda D.; Collins, Scott L.; Knapp, Alan K.; Wang, Zhengwen; Han, Xingguo;pmid: 35122840
Plant nonstructural carbohydrates (NSC) can reflect community and ecosystem responses to environmental changes such as water availability. Climate change is predicted to increase aridity and the frequency of extreme drought events in grasslands, but it is unclear how community-scale NSC will respond to drought or how such responses may vary along aridity gradients. We experimentally imposed a 4-year drought in six grasslands along a natural aridity gradient and measured the community-weighted mean of leaf soluble sugar (SSCWM) and total leaf NSC (NSCCWM) concentrations. We observed a bell-shape relationship across this gradient, where SSCWM and total NSCCWM concentrations were lowest at intermediate aridity, with this pattern driven primarily by species turnover. Drought manipulation increased both SSCWM and total NSCCWM concentrations at one moderately arid grassland but decreased total NSCCWM concentrations at one moist site. These differential responses to experimental drought depended on the relative role of species turnover and intraspecific variation in driving shifts in SSCWM and total NSCCWM concentrations. Specifically, the synergistic effects of species turnover and intraspecific variation drove the responses of leaf NSC concentrations to drought, while their opposing effects diminished the effect of drought on plant SSCWM and total NSCCWM concentrations. Plant resource strategies were more acquisitive, via higher chlorophyllCWM concentration, to offset reduced NSCCWM concentrations and net aboveground primary productivity (ANPP) with increasing aridity at more mesic sites, but more conservative (i.e., decreased plant heightCWM and ANPP) to reduce NSC consumption at drier sites. The relationship between water availability and NSCCWM concentrations may contribute to community drought resistance and improve plant viability and adaptation strategies to a changing climate.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.153589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2023The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.153589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Germany, Germany, Switzerland, GermanyPublisher:Elsevier BV Funded by:SNSF | ICOS-CH Phase 2, EC | VOCOSNSF| ICOS-CH Phase 2 ,EC| VOCOSchuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T. E. E.; Hauck, M.; Hajek, P.; Hartmann, H.; Hiltbrunner, E.; Hoch, G.; Holloway-Phillips, M.; Körner, C.; Larysch, E.; Lübbe, T.; Nelson, D. B.; Rammig, A.; Rigling, A.; Rose, L.; Ruehr, N. K.; Schumann, K.; Weiser, F.; Werner, C.; Wohlgemuth, T.; Zang, C. S.; Kahmen, A.;In 2018, Central Europe experienced one of the most severe and long-lasting summer drought and heat wave ever recorded. Before 2018, the 2003 millennial drought was often invoked as the example of a “hotter drought”, and was classified as the most severe event in Europe for the last 500 years. First insights now confirm that the 2018 drought event was climatically more extreme and had a greater impact on forest ecosystems of Austria, Germany and Switzerland than the 2003 drought. Across this region, mean growing season air temperature from April to October was more than 3.3°C above the long-term average, and 1.2 °C warmer than in 2003. Here, we present a first impact assessment of the severe 2018 summer drought and heatwave on Central European forests. In response to the 2018 event, most ecologically and economically important tree species in temperate forests of Austria, Germany and Switzerland showed severe signs of drought stress. These symptoms included exceptionally low foliar water potentials crossing the threshold for xylem hydraulic failure in many species and observations of widespread leaf discoloration and premature leaf shedding. As a result of the extreme drought stress, the 2018 event caused unprecedented drought-induced tree mortality in many species throughout the region. Moreover, unexpectedly strong drought-legacy effects were detected in 2019. This implies that the physiological recovery of trees was impaired after the 2018 drought event, leaving them highly vulnerable to secondary drought impacts such as insect or fungal pathogen attacks. As a consequence, mortality of trees triggered by the 2018 events is likely to continue for several years. Our assessment indicates that many common temperate European forest tree species are more vulnerable to extreme summer drought and heat waves than previously thought. As drought and heat events are likely to occur more frequently with the progression of climate change, temperate European forests might approach the point for a substantial ecological and economic transition. Our assessment also highlights the urgent need for a pan-European ground-based monitoring network suited to track individual tree mortality, supported by remote sensing products with high spatial and temporal resolution to track, analyse and forecast these transitions. Basic and Applied Ecology, 45 ISSN:1439-1791 ISSN:1618-0089
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/174420Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Basic and Applied EcologyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.baae.2020.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 644 citations 644 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/174420Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Basic and Applied EcologyArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.baae.2020.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu