- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object , Other literature type , Part of book or chapter of book 2013 United StatesPublisher:AIP Authors: Dommen, Josef; Riccobono, Francesco; Schobesberger, Siegfried; Bianchi, Federico; +17 AuthorsDommen, Josef; Riccobono, Francesco; Schobesberger, Siegfried; Bianchi, Federico; Scott, Catherine; Ortega, Ismael K.; Rondo, Linda; Breitenlechner, Martin; Junninen, Heikki; Donahue, Neil M.; Kürten, Andreas; Praplan, Arnaud; Weingartner, Ernest; Hansel, Armin; Curtius, Joachim; Kirkby, Jasper; Kulmala, Markku; Carslaw, Kenneth S.; Worsnop, Douglas R.; Baltensperger, Urs; CLOUD Collaboration;doi: 10.1063/1.4803270
The role of oxidized organic compounds in the process of new particle formation in the atmosphere is poorly known. Here we used the ultraclean and most sophisticated CLOUD chamber to investigate systematically particle formation in the presence of sulfuric acid and oxidized organics. We varied independently the concentrations of both of these components. In addition, nucleation was observed without and in the presence of ionic compounds. From the results a new parameterized description of nucleation was derived for global climate model simulations.
Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Part of book or chapter of book . 2013Full-Text: https://doi.org/10.1063/1.4803270Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4803270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Part of book or chapter of book . 2013Full-Text: https://doi.org/10.1063/1.4803270Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4803270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2016 Germany, Switzerland, Austria, United States, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | ATMNUCLE, AKA | Measurement of Nano-parti..., AKA | Long-term Observation of ... +21 projectsEC| ATMNUCLE ,AKA| Measurement of Nano-particle Nucelation in the Atmosphere via Cluster Ion Mass Spectrometry ,AKA| Long-term Observation of Ambient Nanoclusters and targeted laboratory experiments ¿ bridging the gap between the particle and gas phase ¿LOAN¿ ,AKA| Infrastructure of Environmental and Atmospheric Sciences (ATM-Science) ,UKRI| Developing a framework to test the sensitivity of atmospheric composition simulated by ESMs to changing climate and emissions ,SNSF| Analysis of the chemical composition of nucleating clusters with Atmospheric Pressure Interface Time of Flight Mass Spectrometry ,EC| NANODYNAMITE ,EC| CLOUD-TRAIN ,AKA| Formation and growth of atmospheric aerosol particles: from molecular to global scale ,SNSF| CLOUD ,NSF| Mixing Thermodynamics in Atmospherically Relevant Organic Aerosol Systems ,AKA| Formation and growth of atmospheric aerosol particles: from molecular to global scale ,EC| nanoCAVa ,NSF| Coupling of Gas-Phase Radical Oxidation Chemistry and Organic-Aerosol Formation ,FWF| A Multi-Channel Expansion Type Condensation Particle Counter ,AKA| Nucleation of particles and ice in the atmosphere: from surface layer to upper troposphere ,AKA| ATMOSPHERIC SCIENCES - Particularly for determination of cluster and nanoaerosol composition ,SNSF| CLOUD ,SNSF| Investigation of new particle formation in the CLOUD chamber at CERN and the PSI smog chamber ,ANR| Cappa ,NSF| Constraining the Role of Gas-Phase Organic Oxidation in New-Particle Formation ,SNSF| Buffer-Capacity-based Livelihood Resilience to Stressors - an Early Warning Tool and its Application in Makueni County, Kenya ,SNSF| Ambient particles and their health effects on the susceptible population: combining particle composition with realistic in vitro technology ,AKA| Computational research chain from quantum chemistry to climate change / Consortium: ComQuaCCXuan Zhang; Arnaud P. Praplan; Kirsty J. Pringle; Gerhard Steiner; Gerhard Steiner; Gerhard Steiner; J. S. Craven; Mario Simon; Anne-Kathrin Bernhammer; Sebastian Ehrhart; Sebastian Ehrhart; Tuukka Petäjä; Tuomo Nieminen; Tuomo Nieminen; Claudia Fuchs; Douglas R. Worsnop; Douglas R. Worsnop; Paul M. Winkler; Yuri Stozhkov; Siegfried Schobesberger; Siegfried Schobesberger; Jonathan Duplissy; Jonathan Duplissy; N. A. D. Richards; Juha Kangasluoma; Xuemeng Chen; John H. Seinfeld; Hamish Gordon; Christopher R. Hoyle; Carla Frege; António Amorim; Antti Onnela; F. Bianchi; F. Bianchi; Mikko Sipilä; Mikko Sipilä; Serge Mathot; Ugo Molteni; Kamalika Sengupta; Kenneth S. Carslaw; Andreas Kürten; Penglin Ye; Jaeseok Kim; Jaeseok Kim; Jasmin Tröstl; Heikki Junninen; Joao Almeida; Joao Almeida; Ernest Weingartner; Chao Yan; Jasper Kirkby; Jasper Kirkby; Ismael K. Ortega; Ari Laaksonen; Ari Laaksonen; Nina Sarnela; Armin Hansel; Alexandru Rap; Jani Hakala; Frank Stratmann; Neil M. Donahue; Richard C. Flagan; Matti P. Rissanen; Linda Rondo; Alexey Adamov; Markku Kulmala; Markku Kulmala; Sophia Brilke; António Tomé; Roberto Guida; Otso Peräkylä; Manuel Krapf; Josef Dommen; Martin Heinritzi; Martin Heinritzi; Alexander L. Vogel; Martin Breitenlechner; Christina Williamson; Christina Williamson; Alessandro Franchin; Robert Wagner; Felix Piel; Ilona Riipinen; Tuija Jokinen; Antonio Dias; Daniela Wimmer; Daniela Wimmer; Catherine E. Scott; Joachim Curtius; Urs Baltensperger; Katrianne Lehtipalo; Katrianne Lehtipalo; Andrea Christine Wagner; Vladimir Makhmutov; Paul E. Wagner; Annele Virtanen;AbstractAtmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood1. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours2. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere3,4, and that ions have a relatively minor role5. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded6,7. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Caltech Authors arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYFull-Text: https://doi.org/10.1038/nature17953Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2016Full-Text: https://doi.org/10.1038/nature17953Data sources: Bielefeld Academic Search Engine (BASE)Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am Mainadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 553 citations 553 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Caltech Authors arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYFull-Text: https://doi.org/10.1038/nature17953Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2016Full-Text: https://doi.org/10.1038/nature17953Data sources: Bielefeld Academic Search Engine (BASE)Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am Mainadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United States, United Kingdom, United Kingdom, Austria, AustriaPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | CLOUD-ITN, FWF | Nucleation on charged and..., NSF | Coupling of Gas-Phase Rad... +8 projectsEC| CLOUD-ITN ,FWF| Nucleation on charged and uncharged nanoclusters ,NSF| Coupling of Gas-Phase Radical Oxidation Chemistry and Organic-Aerosol Formation ,FWF| A Multi-Channel Expansion Type Condensation Particle Counter ,SNSF| Investigation of Secondary Organic Aerosol Formation in the PSI Smog Chamber and at CERN ,EC| ATMNUCLE ,SNSF| Molecular Imaging of CNS-Immune System Interactions in Multiple Sclerosis ,SNSF| CLOUD ,FCT| Collaboration in the CLOUD experiment ,SNSF| Investigation of new particle formation in the CLOUD chamber at CERN and the PSI smog chamber ,NSF| Mixing Thermodynamics in Atmospherically Relevant Organic Aerosol SystemsHeike Wex; Richard C. Flagan; Ismael K. Ortega; Ari Laaksonen; John H. Seinfeld; Petri Vaattovaara; Siegfried Schobesberger; Frank Stratmann; Francesco Riccobono; Serge Mathot; Yuri Stozhkov; Agnieszka Kupc; F. Bianchi; Antti Onnela; A. David; Sebastian Ehrhart; Mikko Sipilä; Mikko Sipilä; Filipe Duarte Santos; Kenneth S. Carslaw; Maija Kajos; Tuukka Petäjä; Tuomo Nieminen; Tuomo Nieminen; Georgios Tsagkogeorgas; Douglas R. Worsnop; Jonathan Duplissy; Jonathan Duplissy; Vladimir Makhmutov; Paul E. Wagner; Martin Breitenlechner; Simon Schallhart; Andreas Kürten; António Amorim; Joao Almeida; Jasper Kirkby; Jasper Kirkby; Dominick V. Spracklen; Aron Vrtala; António Tomé; Neil M. Donahue; Helmi Keskinen; Armin Hansel; Josef Dommen; Arnaud P. Praplan; Andrew J. Downard; Heikki Junninen; Ernest Weingartner; Eimear M. Dunne; Catherine E. Scott; Alessandro Franchin; Daniela Wimmer; Alexander N. Kvashin; Katrianne Lehtipalo; Markku Kulmala; Markku Kulmala; Yrjö Viisanen; Linda Rondo; Joachim Curtius; Urs Baltensperger;pmid: 24833386
Out of the Air New-particle formation from gaseous precursors in the atmosphere is a complex and poorly understood process with importance in atmospheric chemistry and climate. Laboratory studies have had trouble reproducing the particle formation rates that must occur in the natural world. Riccobono et al. (p. 717 ) used the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN to recreate a realistic atmospheric environment. Sulfuric acid and oxidized organic vapors in typical natural concentrations caused particle nucleation at similar rates to those observed in the lower atmosphere.
CORE arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1243527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 451 citations 451 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1243527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Other literature type , Part of book or chapter of book 2013 United StatesPublisher:AIP Authors: Dommen, Josef; Riccobono, Francesco; Schobesberger, Siegfried; Bianchi, Federico; +17 AuthorsDommen, Josef; Riccobono, Francesco; Schobesberger, Siegfried; Bianchi, Federico; Scott, Catherine; Ortega, Ismael K.; Rondo, Linda; Breitenlechner, Martin; Junninen, Heikki; Donahue, Neil M.; Kürten, Andreas; Praplan, Arnaud; Weingartner, Ernest; Hansel, Armin; Curtius, Joachim; Kirkby, Jasper; Kulmala, Markku; Carslaw, Kenneth S.; Worsnop, Douglas R.; Baltensperger, Urs; CLOUD Collaboration;doi: 10.1063/1.4803270
The role of oxidized organic compounds in the process of new particle formation in the atmosphere is poorly known. Here we used the ultraclean and most sophisticated CLOUD chamber to investigate systematically particle formation in the presence of sulfuric acid and oxidized organics. We varied independently the concentrations of both of these components. In addition, nucleation was observed without and in the presence of ionic compounds. From the results a new parameterized description of nucleation was derived for global climate model simulations.
Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Part of book or chapter of book . 2013Full-Text: https://doi.org/10.1063/1.4803270Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4803270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Part of book or chapter of book . 2013Full-Text: https://doi.org/10.1063/1.4803270Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4803270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2016 Germany, Switzerland, Austria, United States, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | ATMNUCLE, AKA | Measurement of Nano-parti..., AKA | Long-term Observation of ... +21 projectsEC| ATMNUCLE ,AKA| Measurement of Nano-particle Nucelation in the Atmosphere via Cluster Ion Mass Spectrometry ,AKA| Long-term Observation of Ambient Nanoclusters and targeted laboratory experiments ¿ bridging the gap between the particle and gas phase ¿LOAN¿ ,AKA| Infrastructure of Environmental and Atmospheric Sciences (ATM-Science) ,UKRI| Developing a framework to test the sensitivity of atmospheric composition simulated by ESMs to changing climate and emissions ,SNSF| Analysis of the chemical composition of nucleating clusters with Atmospheric Pressure Interface Time of Flight Mass Spectrometry ,EC| NANODYNAMITE ,EC| CLOUD-TRAIN ,AKA| Formation and growth of atmospheric aerosol particles: from molecular to global scale ,SNSF| CLOUD ,NSF| Mixing Thermodynamics in Atmospherically Relevant Organic Aerosol Systems ,AKA| Formation and growth of atmospheric aerosol particles: from molecular to global scale ,EC| nanoCAVa ,NSF| Coupling of Gas-Phase Radical Oxidation Chemistry and Organic-Aerosol Formation ,FWF| A Multi-Channel Expansion Type Condensation Particle Counter ,AKA| Nucleation of particles and ice in the atmosphere: from surface layer to upper troposphere ,AKA| ATMOSPHERIC SCIENCES - Particularly for determination of cluster and nanoaerosol composition ,SNSF| CLOUD ,SNSF| Investigation of new particle formation in the CLOUD chamber at CERN and the PSI smog chamber ,ANR| Cappa ,NSF| Constraining the Role of Gas-Phase Organic Oxidation in New-Particle Formation ,SNSF| Buffer-Capacity-based Livelihood Resilience to Stressors - an Early Warning Tool and its Application in Makueni County, Kenya ,SNSF| Ambient particles and their health effects on the susceptible population: combining particle composition with realistic in vitro technology ,AKA| Computational research chain from quantum chemistry to climate change / Consortium: ComQuaCCXuan Zhang; Arnaud P. Praplan; Kirsty J. Pringle; Gerhard Steiner; Gerhard Steiner; Gerhard Steiner; J. S. Craven; Mario Simon; Anne-Kathrin Bernhammer; Sebastian Ehrhart; Sebastian Ehrhart; Tuukka Petäjä; Tuomo Nieminen; Tuomo Nieminen; Claudia Fuchs; Douglas R. Worsnop; Douglas R. Worsnop; Paul M. Winkler; Yuri Stozhkov; Siegfried Schobesberger; Siegfried Schobesberger; Jonathan Duplissy; Jonathan Duplissy; N. A. D. Richards; Juha Kangasluoma; Xuemeng Chen; John H. Seinfeld; Hamish Gordon; Christopher R. Hoyle; Carla Frege; António Amorim; Antti Onnela; F. Bianchi; F. Bianchi; Mikko Sipilä; Mikko Sipilä; Serge Mathot; Ugo Molteni; Kamalika Sengupta; Kenneth S. Carslaw; Andreas Kürten; Penglin Ye; Jaeseok Kim; Jaeseok Kim; Jasmin Tröstl; Heikki Junninen; Joao Almeida; Joao Almeida; Ernest Weingartner; Chao Yan; Jasper Kirkby; Jasper Kirkby; Ismael K. Ortega; Ari Laaksonen; Ari Laaksonen; Nina Sarnela; Armin Hansel; Alexandru Rap; Jani Hakala; Frank Stratmann; Neil M. Donahue; Richard C. Flagan; Matti P. Rissanen; Linda Rondo; Alexey Adamov; Markku Kulmala; Markku Kulmala; Sophia Brilke; António Tomé; Roberto Guida; Otso Peräkylä; Manuel Krapf; Josef Dommen; Martin Heinritzi; Martin Heinritzi; Alexander L. Vogel; Martin Breitenlechner; Christina Williamson; Christina Williamson; Alessandro Franchin; Robert Wagner; Felix Piel; Ilona Riipinen; Tuija Jokinen; Antonio Dias; Daniela Wimmer; Daniela Wimmer; Catherine E. Scott; Joachim Curtius; Urs Baltensperger; Katrianne Lehtipalo; Katrianne Lehtipalo; Andrea Christine Wagner; Vladimir Makhmutov; Paul E. Wagner; Annele Virtanen;AbstractAtmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood1. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours2. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere3,4, and that ions have a relatively minor role5. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded6,7. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Caltech Authors arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYFull-Text: https://doi.org/10.1038/nature17953Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2016Full-Text: https://doi.org/10.1038/nature17953Data sources: Bielefeld Academic Search Engine (BASE)Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am Mainadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 553 citations 553 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Caltech Authors arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2016License: CC BYFull-Text: https://doi.org/10.1038/nature17953Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2016Full-Text: https://doi.org/10.1038/nature17953Data sources: Bielefeld Academic Search Engine (BASE)Hochschulschriftenserver - Universität Frankfurt am MainArticle . 2016Data sources: Hochschulschriftenserver - Universität Frankfurt am Mainadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature17953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United States, United Kingdom, United Kingdom, Austria, AustriaPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | CLOUD-ITN, FWF | Nucleation on charged and..., NSF | Coupling of Gas-Phase Rad... +8 projectsEC| CLOUD-ITN ,FWF| Nucleation on charged and uncharged nanoclusters ,NSF| Coupling of Gas-Phase Radical Oxidation Chemistry and Organic-Aerosol Formation ,FWF| A Multi-Channel Expansion Type Condensation Particle Counter ,SNSF| Investigation of Secondary Organic Aerosol Formation in the PSI Smog Chamber and at CERN ,EC| ATMNUCLE ,SNSF| Molecular Imaging of CNS-Immune System Interactions in Multiple Sclerosis ,SNSF| CLOUD ,FCT| Collaboration in the CLOUD experiment ,SNSF| Investigation of new particle formation in the CLOUD chamber at CERN and the PSI smog chamber ,NSF| Mixing Thermodynamics in Atmospherically Relevant Organic Aerosol SystemsHeike Wex; Richard C. Flagan; Ismael K. Ortega; Ari Laaksonen; John H. Seinfeld; Petri Vaattovaara; Siegfried Schobesberger; Frank Stratmann; Francesco Riccobono; Serge Mathot; Yuri Stozhkov; Agnieszka Kupc; F. Bianchi; Antti Onnela; A. David; Sebastian Ehrhart; Mikko Sipilä; Mikko Sipilä; Filipe Duarte Santos; Kenneth S. Carslaw; Maija Kajos; Tuukka Petäjä; Tuomo Nieminen; Tuomo Nieminen; Georgios Tsagkogeorgas; Douglas R. Worsnop; Jonathan Duplissy; Jonathan Duplissy; Vladimir Makhmutov; Paul E. Wagner; Martin Breitenlechner; Simon Schallhart; Andreas Kürten; António Amorim; Joao Almeida; Jasper Kirkby; Jasper Kirkby; Dominick V. Spracklen; Aron Vrtala; António Tomé; Neil M. Donahue; Helmi Keskinen; Armin Hansel; Josef Dommen; Arnaud P. Praplan; Andrew J. Downard; Heikki Junninen; Ernest Weingartner; Eimear M. Dunne; Catherine E. Scott; Alessandro Franchin; Daniela Wimmer; Alexander N. Kvashin; Katrianne Lehtipalo; Markku Kulmala; Markku Kulmala; Yrjö Viisanen; Linda Rondo; Joachim Curtius; Urs Baltensperger;pmid: 24833386
Out of the Air New-particle formation from gaseous precursors in the atmosphere is a complex and poorly understood process with importance in atmospheric chemistry and climate. Laboratory studies have had trouble reproducing the particle formation rates that must occur in the natural world. Riccobono et al. (p. 717 ) used the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN to recreate a realistic atmospheric environment. Sulfuric acid and oxidized organic vapors in typical natural concentrations caused particle nucleation at similar rates to those observed in the lower atmosphere.
CORE arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1243527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 451 citations 451 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1243527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu