- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:MDPI AG Authors: Grace Inman; Ikenna C. Nlebedim; Denis Prodius;doi: 10.3390/en15020628
handle: 20.500.12876/kv7kJ6yv
Population growth has led to an increased demand for raw minerals and energy resources; however, their supply cannot easily be provided in the same proportions. Modern technologies contain materials that are becoming more finely intermixed because of the broadening palette of elements used, and this outcome creates certain limitations for recycling. The recovery and separation of individual elements, critical materials and valuable metals from complex systems requires complex energy-consuming solutions with many hazardous chemicals used. Significant pressure is brought to bear on the improvement of separation and recycling approaches by the need to balance sustainability, efficiency, and environmental impacts. Due to the increase in environmental consciousness in chemical research and industry, the challenge for a sustainable environment calls for clean procedures that avoid the use of harmful organic solvents. Ionic liquids, also known as molten salts and future solvents, are endowed with unique features that have already had a promising impact on cutting-edge science and technologies. This review aims to address the current challenges associated with the energy-efficient design, recovery, recycling, and separation of valuable metals employing ionic liquids.
Energies arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG John Ormerod; Anirudha Karati; Ajay Pal Singh Baghel; Denis Prodius; Ikenna C. Nlebedim;doi: 10.3390/su152014901
Permanent magnets today are used in a wide range of transportation, industrial, residential/commercial, consumer electronics, defense, domestic, data storage, wind energy, and medical markets and applications. There are five classes of commercial permanent magnet materials; however, magnets based on Nd-Fe-B account for over 60% of the global magnet production by value. They typically contain around 31 wt.% of rare earth elements (REEs), principally, Nd and Pr, plus Dy for higher-temperature performance. Nd-Fe-B magnets are forecast to grow throughout this decade, largely driven by the growth in electric vehicles of all types. However, several studies forecast a shortfall of the primary REEs from mined resources. In this paper, the sourcing, processing, and recycling of REEs are discussed. Additionally, presented are the advantages and disadvantages of the major recovery and recycling technologies for REEs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152014901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152014901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Elsevier BV Sidi Deng; Denis Prodius; Ikenna C. Nlebedim; Aihua Huang; Yuehwern Yih; John W. Sutherland;handle: 20.500.12876/EzR2QY5z
Abstract Rare Earth Elements (REEs) are essential for sustainable energy technologies. Techno-economic Assessments (TEAs) have been conducted to evaluate innovative approaches to recover REEs from waste streams. However, most TEA studies do not consider the price volatility of REEs, which raises concern over the reliability of the analysis in an unpredictable dynamic market. To address this shortcoming, a dynamic price model is proposed that adjusts REE price based upon supply-demand conditions. The dynamic market behavior is simulated and its effect on a TEA is examined via a case study. The results of the dynamic simulation indicate a growing trend of the market price for REE materials/products. Compared to a conventional TEA that does not consider price dynamics, a significant difference in economic performance metrics is identified from the dynamic TEA results. The proposed dynamic TEA method is not limited to a specific application and can provide insights for evaluating a broad range of technologies.
Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2021.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2021.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:American Chemical Society (ACS) Authors: Denis Prodius; Kinjal Gandha; Anja-Verena Mudring; Ikenna C. Nlebedim;handle: 20.500.12876/7477
A straightforward and environment-friendly process for acid-free leaching of rare-earth elements and cobalt, which are critical materials, from waste magnet materials has been developed. The proces...
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b05741&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b05741&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:MDPI AG Authors: Grace Inman; Ikenna C. Nlebedim; Denis Prodius;doi: 10.3390/en15020628
handle: 20.500.12876/kv7kJ6yv
Population growth has led to an increased demand for raw minerals and energy resources; however, their supply cannot easily be provided in the same proportions. Modern technologies contain materials that are becoming more finely intermixed because of the broadening palette of elements used, and this outcome creates certain limitations for recycling. The recovery and separation of individual elements, critical materials and valuable metals from complex systems requires complex energy-consuming solutions with many hazardous chemicals used. Significant pressure is brought to bear on the improvement of separation and recycling approaches by the need to balance sustainability, efficiency, and environmental impacts. Due to the increase in environmental consciousness in chemical research and industry, the challenge for a sustainable environment calls for clean procedures that avoid the use of harmful organic solvents. Ionic liquids, also known as molten salts and future solvents, are endowed with unique features that have already had a promising impact on cutting-edge science and technologies. This review aims to address the current challenges associated with the energy-efficient design, recovery, recycling, and separation of valuable metals employing ionic liquids.
Energies arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG John Ormerod; Anirudha Karati; Ajay Pal Singh Baghel; Denis Prodius; Ikenna C. Nlebedim;doi: 10.3390/su152014901
Permanent magnets today are used in a wide range of transportation, industrial, residential/commercial, consumer electronics, defense, domestic, data storage, wind energy, and medical markets and applications. There are five classes of commercial permanent magnet materials; however, magnets based on Nd-Fe-B account for over 60% of the global magnet production by value. They typically contain around 31 wt.% of rare earth elements (REEs), principally, Nd and Pr, plus Dy for higher-temperature performance. Nd-Fe-B magnets are forecast to grow throughout this decade, largely driven by the growth in electric vehicles of all types. However, several studies forecast a shortfall of the primary REEs from mined resources. In this paper, the sourcing, processing, and recycling of REEs are discussed. Additionally, presented are the advantages and disadvantages of the major recovery and recycling technologies for REEs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152014901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152014901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:Elsevier BV Sidi Deng; Denis Prodius; Ikenna C. Nlebedim; Aihua Huang; Yuehwern Yih; John W. Sutherland;handle: 20.500.12876/EzR2QY5z
Abstract Rare Earth Elements (REEs) are essential for sustainable energy technologies. Techno-economic Assessments (TEAs) have been conducted to evaluate innovative approaches to recover REEs from waste streams. However, most TEA studies do not consider the price volatility of REEs, which raises concern over the reliability of the analysis in an unpredictable dynamic market. To address this shortcoming, a dynamic price model is proposed that adjusts REE price based upon supply-demand conditions. The dynamic market behavior is simulated and its effect on a TEA is examined via a case study. The results of the dynamic simulation indicate a growing trend of the market price for REE materials/products. Compared to a conventional TEA that does not consider price dynamics, a significant difference in economic performance metrics is identified from the dynamic TEA results. The proposed dynamic TEA method is not limited to a specific application and can provide insights for evaluating a broad range of technologies.
Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2021.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Producti... arrow_drop_down Sustainable Production and ConsumptionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.spc.2021.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:American Chemical Society (ACS) Authors: Denis Prodius; Kinjal Gandha; Anja-Verena Mudring; Ikenna C. Nlebedim;handle: 20.500.12876/7477
A straightforward and environment-friendly process for acid-free leaching of rare-earth elements and cobalt, which are critical materials, from waste magnet materials has been developed. The proces...
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b05741&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.9b05741&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu