Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laura E Hamon; Joel G Kingsolver; Kati J Moore; Allen H Hurlbert;

    Abstract Climate change has been repeatedly linked to phenological shifts in many taxa, but the factors that drive variation in phenological sensitivity remain unclear. For example, relatively little is known about phenological responses in areas that have not exhibited a consistent warming trend, making it difficult to project phenological responses in response to future climate scenarios for these regions. We used an extensive community science dataset to examine changes in the adult flight onset dates of 38 butterfly species with interannual variation in spring temperatures in the Piedmont region of North Carolina, a region that did not experience a significant overall warming trend in the second half of the 20th century. We also explored whether voltinism, overwintering stage, and mean adult flight onset dates explain interspecific variation in phenological sensitivity to spring temperature. We found that 12 out of 38 species exhibited a significant advance in adult flight onset dates with higher spring temperatures. In comparison, none of the 38 species exhibited a significant advance with year. There was a significant interaction between mean onset flight date and voltinism, such that late-emerging, multivoltine species tended to be the most sensitive to spring temperature changes. We did not observe a significant correlation between phenological sensitivity and the overwintering stage. These results suggest that butterfly arrival dates may shift as temperatures are projected to rise in the southeastern United States, with late-emerging, multivoltine species potentially exhibiting the greatest shifts in adult flight onset dates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Entomo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Entomology
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    UNC Dataverse
    Article . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laura E Hamon; Joel G Kingsolver; Kati J Moore; Allen H Hurlbert;

    Abstract Climate change has been repeatedly linked to phenological shifts in many taxa, but the factors that drive variation in phenological sensitivity remain unclear. For example, relatively little is known about phenological responses in areas that have not exhibited a consistent warming trend, making it difficult to project phenological responses in response to future climate scenarios for these regions. We used an extensive community science dataset to examine changes in the adult flight onset dates of 38 butterfly species with interannual variation in spring temperatures in the Piedmont region of North Carolina, a region that did not experience a significant overall warming trend in the second half of the 20th century. We also explored whether voltinism, overwintering stage, and mean adult flight onset dates explain interspecific variation in phenological sensitivity to spring temperature. We found that 12 out of 38 species exhibited a significant advance in adult flight onset dates with higher spring temperatures. In comparison, none of the 38 species exhibited a significant advance with year. There was a significant interaction between mean onset flight date and voltinism, such that late-emerging, multivoltine species tended to be the most sensitive to spring temperature changes. We did not observe a significant correlation between phenological sensitivity and the overwintering stage. These results suggest that butterfly arrival dates may shift as temperatures are projected to rise in the southeastern United States, with late-emerging, multivoltine species potentially exhibiting the greatest shifts in adult flight onset dates.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Entomo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Entomology
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    UNC Dataverse
    Article . 2024
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph