Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Khadijat Abdulkareem Abdulraheem; orcid Jamiu Adetayo Adeniran;
    Jamiu Adetayo Adeniran
    ORCID
    Harvested from ORCID Public Data File

    Jamiu Adetayo Adeniran in OpenAIRE
    Adeniyi Saheed Aremu; orcid Muhammad-Najeeb O. Yusuf;
    Muhammad-Najeeb O. Yusuf
    ORCID
    Harvested from ORCID Public Data File

    Muhammad-Najeeb O. Yusuf in OpenAIRE
    +4 Authors

    The fast-economic development and population growth in Nigeria have resulted in huge quantities of air pollutants emission which have implications on the environment. Detailed sectoral emission inventory to serve as the basis for policy formation to mitigate the condition is still lacking. This study builds detailed sectoral emission inventory using the emission factor approach to estimates various pollutant emissions from different sources. Five major sources of pollutant emissions were identified which include transportation, energy, municipal solid waste, wood fuel, and agricultural sectors. An increasing trend in emissions from 1980 to 2020 was observed for total emission of CO, NOx, PM2.5, PM10, SO2, NH3 and NMVOC in Nigeria that increased from 1 736-6 210; 143-338; 126-551; 171-717; 19-60; 4-28; and 471-1 587 Gg, respectively. Wood fuel, transportation, and municipal waste sectors are the major sources that contributed to 63%, 16%, and 15% of the total CO emission. Three mitigation scenarios for emission reduction for the future were analyzed. CO emission reductions of 38%, 24%, and 38% will be obtained from the liquefied petroleum gas (LPG) intervention, waste to energy (WTE) technology, and vehicle inspection and maintenance (VIM) policy scenarios, respectively, through to the year 2050.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Monitoring and Assessment
    Article . 2023 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Monitoring and Assessment
      Article . 2023 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Khadijat Abdulkareem Abdulraheem; orcid Jamiu Adetayo Adeniran;
    Jamiu Adetayo Adeniran
    ORCID
    Harvested from ORCID Public Data File

    Jamiu Adetayo Adeniran in OpenAIRE
    Adeniyi Saheed Aremu; orcid Muhammad-Najeeb O. Yusuf;
    Muhammad-Najeeb O. Yusuf
    ORCID
    Harvested from ORCID Public Data File

    Muhammad-Najeeb O. Yusuf in OpenAIRE
    +4 Authors

    The fast-economic development and population growth in Nigeria have resulted in huge quantities of air pollutants emission which have implications on the environment. Detailed sectoral emission inventory to serve as the basis for policy formation to mitigate the condition is still lacking. This study builds detailed sectoral emission inventory using the emission factor approach to estimates various pollutant emissions from different sources. Five major sources of pollutant emissions were identified which include transportation, energy, municipal solid waste, wood fuel, and agricultural sectors. An increasing trend in emissions from 1980 to 2020 was observed for total emission of CO, NOx, PM2.5, PM10, SO2, NH3 and NMVOC in Nigeria that increased from 1 736-6 210; 143-338; 126-551; 171-717; 19-60; 4-28; and 471-1 587 Gg, respectively. Wood fuel, transportation, and municipal waste sectors are the major sources that contributed to 63%, 16%, and 15% of the total CO emission. Three mitigation scenarios for emission reduction for the future were analyzed. CO emission reductions of 38%, 24%, and 38% will be obtained from the liquefied petroleum gas (LPG) intervention, waste to energy (WTE) technology, and vehicle inspection and maintenance (VIM) policy scenarios, respectively, through to the year 2050.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Monitoring and Assessment
    Article . 2023 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Monitoring and Assessment
      Article . 2023 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rafiu Olasunkanmi Yusuf; Emmanuel Toluwalope Odediran; orcid Jamiu Adetayo Adeniran;
    Jamiu Adetayo Adeniran
    ORCID
    Harvested from ORCID Public Data File

    Jamiu Adetayo Adeniran in OpenAIRE
    Olusola Adedayo Adesina;

    Road dust is a principal source and depository of polycyclic aromatic hydrocarbons (PAHs) in many urban areas of the world. Hence, this study probed the spatial and seasonal pattern, sources, and related cancer health risks of PAHs in the road dusts sampled at ten traffic intersection (TIs) of a model African city. Mixed PAHs sources were ascertained using the diagnostic ratios and positive matrix factorization (PMF) model. The results showed fluctuations in mean concentrations from 36.51 to 43.04 µg/g. Three-ring PAHs were the most abundant PAHs with anthracene (Anth) ranging from 6.84 ± 1.99 to 9.26 ± 4.42 µg/g being the predominant pollutant in Ibadan. Benzo(k)Fluoranthene (BkF) which is a pointer of traffic emission was the most dominant among the seven carcinogenic PAHs considered, varying from 2.68 ± 0.43 to 4.59 ± 0.48 µg/g. Seasonal variation results showed that PAH concentrations were 20% higher during dry season than rainy season. The seven sources of PAHs identified by PMF model include the following: diesel vehicle exhausts, gasoline combustion, diesel combustion, coal tar combustion, gasoline vehicle exhausts, coal and wood (biomass) combustion, and emissions from unburnt fossil fuels. Employing the incremental lifetime cancer risk (ILCR) model, the city's cancer risk of 5.96E-05 for children and 6.60E-05 for adults were more than the satisfactory risk baseline of ILCR ≤ 10-6 and higher in adults than in Children.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2022 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2022 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rafiu Olasunkanmi Yusuf; Emmanuel Toluwalope Odediran; orcid Jamiu Adetayo Adeniran;
    Jamiu Adetayo Adeniran
    ORCID
    Harvested from ORCID Public Data File

    Jamiu Adetayo Adeniran in OpenAIRE
    Olusola Adedayo Adesina;

    Road dust is a principal source and depository of polycyclic aromatic hydrocarbons (PAHs) in many urban areas of the world. Hence, this study probed the spatial and seasonal pattern, sources, and related cancer health risks of PAHs in the road dusts sampled at ten traffic intersection (TIs) of a model African city. Mixed PAHs sources were ascertained using the diagnostic ratios and positive matrix factorization (PMF) model. The results showed fluctuations in mean concentrations from 36.51 to 43.04 µg/g. Three-ring PAHs were the most abundant PAHs with anthracene (Anth) ranging from 6.84 ± 1.99 to 9.26 ± 4.42 µg/g being the predominant pollutant in Ibadan. Benzo(k)Fluoranthene (BkF) which is a pointer of traffic emission was the most dominant among the seven carcinogenic PAHs considered, varying from 2.68 ± 0.43 to 4.59 ± 0.48 µg/g. Seasonal variation results showed that PAH concentrations were 20% higher during dry season than rainy season. The seven sources of PAHs identified by PMF model include the following: diesel vehicle exhausts, gasoline combustion, diesel combustion, coal tar combustion, gasoline vehicle exhausts, coal and wood (biomass) combustion, and emissions from unburnt fossil fuels. Employing the incremental lifetime cancer risk (ILCR) model, the city's cancer risk of 5.96E-05 for children and 6.60E-05 for adults were more than the satisfactory risk baseline of ILCR ≤ 10-6 and higher in adults than in Children.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2022 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2022 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Jamiu Adetayo Adeniran;
    Jamiu Adetayo Adeniran
    ORCID
    Harvested from ORCID Public Data File

    Jamiu Adetayo Adeniran in OpenAIRE
    Rafiu Olasunkanmi Yusuf; Adeniyi Saheed Aremu; Temitope Mariam Aareola;

    The exergy analysis and air pollutants emission estimation from the kiln system of a major cement manufacturing plant located in Nigeria were conducted with a view to improve the level of performance of the production unit and minimize environmental effects. Material balance and exergy analysis were carried out on the system to determine the exergetic efficiency and exergy destruction rate. Pollutants emission was estimated using bottom-up emission factor approach. The physical and chemical exergy output obtained were 9.07×107 and 1.46×08 kJ/h, respectively. The exergy efficiency of the kiln system was 27.35%. The measure of entropy generation (6.53×108 kJ/h) represented a huge potential for energy savings for the unit. CO2 emission represented about 99.04% of the total criteria air pollutants emission from the kiln and an estimate of 0.90 tonnes of CO2/tonne of clinker produced was obtained. To improve the exergy efficiency and reduce pollutants emission from the kiln system, possible heat recovery options and CO2 mitigation approaches were suggested.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environment
    Article . 2018 . Peer-reviewed
    License: SAGE TDM
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environment
      Article . 2018 . Peer-reviewed
      License: SAGE TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Jamiu Adetayo Adeniran;
    Jamiu Adetayo Adeniran
    ORCID
    Harvested from ORCID Public Data File

    Jamiu Adetayo Adeniran in OpenAIRE
    Rafiu Olasunkanmi Yusuf; Adeniyi Saheed Aremu; Temitope Mariam Aareola;

    The exergy analysis and air pollutants emission estimation from the kiln system of a major cement manufacturing plant located in Nigeria were conducted with a view to improve the level of performance of the production unit and minimize environmental effects. Material balance and exergy analysis were carried out on the system to determine the exergetic efficiency and exergy destruction rate. Pollutants emission was estimated using bottom-up emission factor approach. The physical and chemical exergy output obtained were 9.07×107 and 1.46×08 kJ/h, respectively. The exergy efficiency of the kiln system was 27.35%. The measure of entropy generation (6.53×108 kJ/h) represented a huge potential for energy savings for the unit. CO2 emission represented about 99.04% of the total criteria air pollutants emission from the kiln and an estimate of 0.90 tonnes of CO2/tonne of clinker produced was obtained. To improve the exergy efficiency and reduce pollutants emission from the kiln system, possible heat recovery options and CO2 mitigation approaches were suggested.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy & Environment
    Article . 2018 . Peer-reviewed
    License: SAGE TDM
    Data sources: Crossref
    addClaim
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy & Environmentarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy & Environment
      Article . 2018 . Peer-reviewed
      License: SAGE TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jamiu Adetayo Adeniran;
    Jamiu Adetayo Adeniran
    ORCID
    Harvested from ORCID Public Data File

    Jamiu Adetayo Adeniran in OpenAIRE
    orcid bw Rafiu Olasunkanmi Yusuf;
    Rafiu Olasunkanmi Yusuf
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Rafiu Olasunkanmi Yusuf in OpenAIRE
    orcid Bamidele Sunday Fakinle;
    Bamidele Sunday Fakinle
    ORCID
    Harvested from ORCID Public Data File

    Bamidele Sunday Fakinle in OpenAIRE
    Jacob Ademola Sonibare;

    Abstract Cement manufacturing contributes to the elevation of air pollutants in the atmosphere and thus impact on the nearby communities. This study assessed air quality in a major Cement Plant in Ibese Ogun State, Nigeria, through an ambient air quality monitoring and air emission dispersion modelling. Particulate Matter (PM) and gaseous pollutants were measured using portable samplers and AERMOD View was used for the emission dispersion modelling. Combustion products including SO2, NO, NO2, CO and VOCs were the gaseous pollutants detected along the complex fenceline and in the receptor environments. Pollutants measurements were undertaken at 23 locations within the fence line and receptor locations. The daily SO2 and NO2 Federal Ministry of Environment - Nigeria (FMEnv) limits were exceeded in ten (10) and five (5) locations along the fenceline, respectively. Particulates were detected in all the locations along the fenceline and in the communities. The cumulative gaseous pollutants resulting from simultaneous operations of all the identified plant air emission point sources are 0.01–276.13% of their respective 24-h limits along the fenceline, with 1-h SO2 within the threshold limit at all fenceline locations, but 1-h NOX exceeds the threshold limit at all locations 16–21 times. The 24-h CO and VOCs are within their limits at all fenceline locations; however the 24-h SO2 and NOX are breaching the limits at some locations 30–34 times (0.34–0.39% of the investigation period) and 44–87 times, respectively. Daily and Annual averaging concentrations of PM10 was 14.32–31.54% and 4.90–52.60% of their respective limits. Process facilities are the major point sources of atmospheric emissions identified in the factory. Several fugitive emission sources were also identified during the field work. Comprehensive evaluation of the fugitive emission sources should be carried out in the cement plant for immediate attention.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Pollutio...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Atmospheric Pollution Research
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Pollutio...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Atmospheric Pollution Research
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jamiu Adetayo Adeniran;
    Jamiu Adetayo Adeniran
    ORCID
    Harvested from ORCID Public Data File

    Jamiu Adetayo Adeniran in OpenAIRE
    orcid bw Rafiu Olasunkanmi Yusuf;
    Rafiu Olasunkanmi Yusuf
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Rafiu Olasunkanmi Yusuf in OpenAIRE
    orcid Bamidele Sunday Fakinle;
    Bamidele Sunday Fakinle
    ORCID
    Harvested from ORCID Public Data File

    Bamidele Sunday Fakinle in OpenAIRE
    Jacob Ademola Sonibare;

    Abstract Cement manufacturing contributes to the elevation of air pollutants in the atmosphere and thus impact on the nearby communities. This study assessed air quality in a major Cement Plant in Ibese Ogun State, Nigeria, through an ambient air quality monitoring and air emission dispersion modelling. Particulate Matter (PM) and gaseous pollutants were measured using portable samplers and AERMOD View was used for the emission dispersion modelling. Combustion products including SO2, NO, NO2, CO and VOCs were the gaseous pollutants detected along the complex fenceline and in the receptor environments. Pollutants measurements were undertaken at 23 locations within the fence line and receptor locations. The daily SO2 and NO2 Federal Ministry of Environment - Nigeria (FMEnv) limits were exceeded in ten (10) and five (5) locations along the fenceline, respectively. Particulates were detected in all the locations along the fenceline and in the communities. The cumulative gaseous pollutants resulting from simultaneous operations of all the identified plant air emission point sources are 0.01–276.13% of their respective 24-h limits along the fenceline, with 1-h SO2 within the threshold limit at all fenceline locations, but 1-h NOX exceeds the threshold limit at all locations 16–21 times. The 24-h CO and VOCs are within their limits at all fenceline locations; however the 24-h SO2 and NOX are breaching the limits at some locations 30–34 times (0.34–0.39% of the investigation period) and 44–87 times, respectively. Daily and Annual averaging concentrations of PM10 was 14.32–31.54% and 4.90–52.60% of their respective limits. Process facilities are the major point sources of atmospheric emissions identified in the factory. Several fugitive emission sources were also identified during the field work. Comprehensive evaluation of the fugitive emission sources should be carried out in the cement plant for immediate attention.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Pollutio...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Atmospheric Pollution Research
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Pollutio...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Atmospheric Pollution Research
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph