- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Siying Deng; Siying Deng; Umair Ashraf; Umair Ashraf; Mohsin Nawaz; Ghulam Abbas; Xiangru Tang; Xiangru Tang; Zhaowen Mo; Zhaowen Mo;pmid: 35769300
pmc: PMC9234578
The present study was conducted to assess the effects of water and nitrogen applications at the booting stage on yield, grain quality, and nutrient use efficiencies in fragrant rice in the early (March–July) and late (July–November) seasons of 2013. The experiment was comprised of two fragrant rice cultivars, i.e., Nongxiang 18 and Basmati; three nitrogen levels, i.e., 0 kg N ha−1 (N0), 30 kg N ha−1 (N1), and 60 kg N ha−1 (N2); and three water levels, i.e., 2–4 cm water layer well-watered (W0), water with a soil water potential of −15 ± 5 kPa (W1), and water with a soil water potential of −25 ± 5 kPa (W2), which were randomized in a split-split plot design. Results showed that Basmati produced a higher grain yield than Nongxiang 18 (16.20 and 9.61% in the early and late season, respectively), whereas the W1 exhibited the maximum grain yield and harvest index. The moderate application of nitrogen (N1) at the booting stage resulted in higher grain yield, nevertheless, cultivar, water, and nitrogen revealed different trends for some of the grain quality attributes, i.e., brown rice rate, milled rice rate, head milled rice rate, protein content, and amylose content as well as nutrient uptake and use efficiencies in the double rice production system. Basmati had a higher nitrogen harvest index (NHI; 18.28–20.23%) and P harvest index (PHI; 3.95–12.42%) but lower physiological P use efficiency for biomass (PPUEB; 7.66–23.66%) and physiological K use efficiency for biomass (PKUEB; 2.53–7.10%) than Nongxiang 18 in both seasons. Furthermore, the grain number per panicle, biomass yield, grain P uptake, and the whole plant P uptake were significantly related to the grain yield of fragrant rice. In both seasons, the interaction of water and nitrogen (W × N) had a significant effect on panicle number, grain quality attributes, and N, P uptake of straw, as well as the physiological N, P use efficiency for grain and the physiological N, K use efficiency for biomass. Overall, results suggest that moderate nitrogen and irrigation input at the booting stage could be feasible to improve the productivity and quality of the double rice production system with improved nutrient use efficiency under the agro-climatic conditions of South China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2022.907231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2022.907231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Xinyi Wang; Yong Ren; Umair Ashraf; Runfei Gui; Huizi Deng; Lan Dai; Xiangru Tang; Zaiman Wang; Zhaowen Mo;doi: 10.1002/jsfa.12767
pmid: 37278411
AbstractBackgroundThe use of liquid fertilizer is an effective measure to increase rice yield and nitrogen use efficiency. There has been a lack of information regarding the effects on the grain yield, biomass accumulation, and nutrient uptake in late‐season indica fragrant rice of split fertilizer application and of nitrogen management in liquid fertilizer application.ResultsA 2‐year field experiment was carried out during 2019 and 2020 with two fragrant rice cultivars grown under differing fertilizer management treatments. Results showed that the fertilization treatments affected the grain yield, yield components, biomass accumulation, and nutrient accumulation significantly. The mean nitrogen recovery efficiency with liquid fertilizer management was greater than in a control treatment corresponding to a practice commonly used by farmers (H2). The effects of nitrogen metabolism enzymes in the leaves of both rice cultivars were stronger with liquid fertilizer treatments than with H2. Grain yield was positively associated with the effective panicle number, spikelets per panicle, dry matter accumulation, N and K accumulation, and the nitrogen metabolism enzymes.ConclusionsOptimized liquid fertilizer management increases biomass accumulation, nitrogen utilization efficiency, and nitrogen metabolism. It stabilizes yields and increases the economic benefits of late‐season indica fragrant rice. © 2023 Society of Chemical Industry.
Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.12767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.12767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Muhammad Abrar; Ying Zhu; Muhammad Maqsood Ur Rehman; Asfa Batool; Hai-Xia Duan; Umair Ashraf; Muhammad Aqeel; Xiao-Fang Gong; Yi-Nan Peng; Wasim Khan; Zhi-Ye Wang; You-Cai Xiong;pmid: 38879986
Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.
Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2024.108839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2024.108839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Shuqing Qiu; Jiaen Zhang; Meijuan Li; Benliang Zhao; Shiwei Liu; Umair Ashraf; Umair Ashraf;pmid: 30569454
AbstractBACKGROUNDA mixed‐cropping system that enhances farmland biodiversity has the potential to improve grain yield and quality; however, the impacts of growing different rice cultivars simultaneously has been rarely investigated. In the present study, five popular rice cultivars were selected and ten mixture combinations were made according to the growth period, plant height, grain yield and quality, and pest and disease resistance. Seedlings of the five cultivars and ten mixture combinations (mixed‐sowing of the seeds in an equal ratio, then mixed‐transplanting and finally mixed‐harvesting) were grown in plastic pots in a glasshouse during the early and late growing seasons in 2016.RESULTSCompared with the mono‐cropping systems in the early and late growing seasons in 2016 (paired t‐test), the mixed‐cropping systems increased the rice leaf photosynthetic rate, soil plant analysis development (SPAD) index and total aboveground dry weight. Moreover, mixed‐cropping systems improved the number of spikelets per panicle, seed‐setting rate, and grain weight per pot and harvest index by 19.52% and 5.77%, 8.53% and 4.41%, 8.31% and 4.61%, and 10.26% and 6.98% in the early and late growing seasons, respectively. In addition, mixed‐cropping systems reduced chalky rice rate and chalkiness degree by 33.12% and 43.42% and by 30.11% and 48.13% in the early and late growing seasons, respectively.CONCLUSIONThe SPAD indexes and photosynthetic rates enhanced at physiology maturity in mixed‐cropping systems may result in higher grain yield and better grain quality. In general, it was found that mixed‐cropping with different rice cultivars has the potential for increasing grain yield and improving grain quality. © 2018 Society of Chemical Industry
Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.9547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.9547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Xiangru Tang; Umair Ashraf;pmid: 28264775
Present study was planned to assess the yield and quality responses, plant physio-biochemical characters and Pb distribution pattern in two aromatic rice cultivars viz., Guixiangzhan (GXZ) and Nongxiang-18 (NX-18) under four different Pb-levels viz., control (0), low (400), medium (800) and high (1200) mg kg-1of soil. Results revealed that Pb toxicity increased H2O2, lipid peroxidation and electrolyte leakage while inhibited photosynthetic pigments production, but such increment was higher in NX-18 than GXZ. Furthermore, Pb toxicity variably affected protein, proline and soluble sugars and the activities of enzymatic antioxidants viz., superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) and non-enzymatic anti-oxidants viz., reduced glutathione (GSH) and oxidized glutathione (GSSG) in both rice cultivars. The reductions in osmolyte accumulation and antioxidant activities were more severe in NX-18 than GXZ. Pb toxicity severely reduced yield and quality related attributes and plant biomass accumulation; however the reductions were more apparent NX-18 than GXZ. Furthermore, NX-18 accumulated less Pb proportions in roots (∼84%), and transferred more towards shoot, leaves, ears (at panicle heading (PH)) and grains (at maturity (MAT)) than GXZ (∼91% root Pb proportions). Hence, the ability of GXZ to retain higher Pb contents in roots and less towards upper plant parts, higher osmolyte accumulation and antioxidant activities and less yield reduction as compare to NX-18 might be an adaptive response of GXZ under Pb toxicity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.02.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.02.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Muhammad Rizwan; Umair Ashraf; Muhammad Zubair; Haifa Abdulaziz S. Alhaithloul; Mona H. Soliman; Mona H. Soliman; Shafaqat Ali; Shafaqat Ali; Sheharyaar Farid; Mujahid Farid; Salah M. Gowayed; Hafiz Khuzama Ishaq;pmid: 31574440
The adverse industrial activities discharged contaminated wastewater directly into the water bodies that contain toxic substances such as heavy metals. The contours use of marble industrial effluents may affect the fertility of soil and crop growth. The present study was conducted to investigate the toxic effects of marble industrial effluents (M.E) on Zea mays L under the exogenous application of citric acid (CA) with different combinations such as marble industrial effluent (0, 30%, 60%, 100%) diluted with distilled water and CA (10 mM). The results showed significant decrease in the growth of Zea mays with increasing concentration of marble industrial effluent. The maximum reduction in plant height, root length, number of leaves, leaf area and fresh and dry biomass was observed at the application of 100% M.E as compared to control. Similar to growth conditions the photosynthetic machinery and the activities of antioxidant enzymes (Superoxide dismutase (SOD), Peroxidases (POD), Catalases (CAT), Ascorbate peroxidase (APX)) was also decreased with increasing concentration of M.E. The application of CA significantly alleviated the M.E induced toxic effect on Zea mays and ameliorated the growth, biomass, photosynthesis and antioxidant enzymes activities by reducing the production of reactive oxygen species. The C.A application also enhanced the heavy metal content such as chromium (Cr), cadmium (Cd), Zinc (Zn) in different parts of Zea mays. The results concluded that the Zea mays tolerant varieties can be a potential candidate for the M.E irrigated soil and might be suitable for the phyto-extraction of Cr, Cd and Zn.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Zhaowen Mo; Zhaowen Mo; Dejun Qin; Meng Wang; Maosen Zhuang; Xuwei Liu; Yuzhan Li; Umair Ashraf; Hua Tian; Wu Li; Shuli Wang; Zhuoli Huang; Wenjun Xie;pmid: 32135442
Nitrate reductase is a nitric oxide (NO) induced enzyme in plants, NO acts as a signaling molecule under ZnO NPs-induced stress whereas melatonin (N-acetyl-5-methoxytryptamine) could improve morpho-physiological attributes of plants under adverse conditions. In present study, seedlings of two rice genotypes differed regarding nitrate reductase activities i.e., transgenic 'NR' and wild type 'WT' were applied with two melatonin levels i.e., 0, 10 μΜ regarded as M0, M10, respectively and three levels of ZnO NPs i.e., 0, 50, 500 mg L-1 regarded as ZnO NPs0, ZnO NPs50 and ZnO NPs500, respectively. Results revealed that melatonin application substantially increased the dry biomass accumulation of both rice genotypes under all ZnO NPs levels. The root growth, mineral absorption as well as the antioxidant responses were also improved by melatonin application under ZnO NPs stress. The interactive effects of melatonin and genotype on plant growth, antioxidant responses and mineral contents i.e., Zn, Na, Fe and Mn were also found significant under different ZnO NPs stress. Furthermore, total plant dry weight was significantly correlated with the leaf dry weight, root volume, catalase (CAT) activity in leaves, Na accumulation in stem sheath and Fe accumulation in root under both M0 and M10 treatments. Moreover, the comparative transcriptome analysis identified key genes which were responsible for melatonin and NO-induced modulations in plant growth under ZnO NPs stress. Overall, melatonin could improve the morphological growth of the rice plants by modulating root-shoot characteristics, antioxidant activities and mineral uptake in root and shoot of rice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.126337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.126337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Netherlands, Australia, AustraliaPublisher:Springer Science and Business Media LLC Saddam Hussain; Umair Ashraf; Shakeel Ahmad Anjum; Artemi Cerdà; Artemi Cerdà; Mohsin Tanveer; Mohsin Tanveer;pmid: 28083744
Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-8371-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-8371-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Frontiers Media SA Saddam Hussain; Shengnan Men; Longchang Wang; Abdul Khaliq; Shakeel Ahmad Anjum; Hafiz Athar Hussain; Umair Ashraf;Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors.
Frontiers in Plant S... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 556 citations 556 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Umair Ashraf; Lin Li; Tiaoyan Wu; Zaiman Wang; Xiangru Tang; Xiangru Tang; Yousef Alhaj Hamoud; Yifei Wang; Yifei Wang; Shenggang Pan; Shenggang Pan; Lixiao Nie; Zheng Zhang; Zheng Zhang; Hua Tian; Hua Tian;Abstract Increasing energy output and improving energy production efficiency is essential to ensure the long-term sustainability of rice production systems in China. Present study assessed the energy input/output and its production efficiency for manual transplanted rice with manual broadcasting fertilizer (TR-MBF), mechanical pot-seedling transplanted rice synchronized with deep fertilization (MPST-DF), and mechanical hill direct-seeding rice synchronized with deep fertilization (MHDS-DF) in a three-year field experiment. Two rice cultivars i.e., Yuxiangyouzhan (YXYZ, inbred rice) and Wufengyou615 (WFY615, hybrid rice) were used to determine the energy input/output and production efficiency of each system. Results depicted that the MHDS-DF and MPST-DF treatment substantially improved the grain yield by 20.9% and 32.3% for WFY615 and YXYZ owing to enhanced total above-ground biomass (TAB) and leaf area index (LAI), respectively. Means across years and cultivars for energy input in the TR-MBF, MPST-DF, and MHDS-DF were remained 31918.0, 35267.1 and 36036.7 MJ ha−1, respectively. The energy consumed by diesel and fertilizer for energy inputs in the production system exceeds 70% of the total energy input. Moreover, the three rice production systems were highly dependent on non-renewable energy. The highest output energy and net energy were obtained for MHDS-DF and MPST-DF treatments with 221517.2 and 185670.0 MJ ha-1, respectively. Among the three rice production systems, the highest energy use efficiency, energy productivity efficiency, energy profitability efficiency was found in MPST-DF, which was slightly higher than MHDS-DF. However, the human energy profitability efficiency of MHDS-DF treatment was significantly higher than other treatments. Therefore, MHDS-DF and MPST-DF could be best alternative technologies than conventional rice production systems with improved energy input and energy production efficiency in South China. Furthermore, both MHDS-DF and MPST-DF would also be suitable in the regions with lack of labor force for rice production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2021.108359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2021.108359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Siying Deng; Siying Deng; Umair Ashraf; Umair Ashraf; Mohsin Nawaz; Ghulam Abbas; Xiangru Tang; Xiangru Tang; Zhaowen Mo; Zhaowen Mo;pmid: 35769300
pmc: PMC9234578
The present study was conducted to assess the effects of water and nitrogen applications at the booting stage on yield, grain quality, and nutrient use efficiencies in fragrant rice in the early (March–July) and late (July–November) seasons of 2013. The experiment was comprised of two fragrant rice cultivars, i.e., Nongxiang 18 and Basmati; three nitrogen levels, i.e., 0 kg N ha−1 (N0), 30 kg N ha−1 (N1), and 60 kg N ha−1 (N2); and three water levels, i.e., 2–4 cm water layer well-watered (W0), water with a soil water potential of −15 ± 5 kPa (W1), and water with a soil water potential of −25 ± 5 kPa (W2), which were randomized in a split-split plot design. Results showed that Basmati produced a higher grain yield than Nongxiang 18 (16.20 and 9.61% in the early and late season, respectively), whereas the W1 exhibited the maximum grain yield and harvest index. The moderate application of nitrogen (N1) at the booting stage resulted in higher grain yield, nevertheless, cultivar, water, and nitrogen revealed different trends for some of the grain quality attributes, i.e., brown rice rate, milled rice rate, head milled rice rate, protein content, and amylose content as well as nutrient uptake and use efficiencies in the double rice production system. Basmati had a higher nitrogen harvest index (NHI; 18.28–20.23%) and P harvest index (PHI; 3.95–12.42%) but lower physiological P use efficiency for biomass (PPUEB; 7.66–23.66%) and physiological K use efficiency for biomass (PKUEB; 2.53–7.10%) than Nongxiang 18 in both seasons. Furthermore, the grain number per panicle, biomass yield, grain P uptake, and the whole plant P uptake were significantly related to the grain yield of fragrant rice. In both seasons, the interaction of water and nitrogen (W × N) had a significant effect on panicle number, grain quality attributes, and N, P uptake of straw, as well as the physiological N, P use efficiency for grain and the physiological N, K use efficiency for biomass. Overall, results suggest that moderate nitrogen and irrigation input at the booting stage could be feasible to improve the productivity and quality of the double rice production system with improved nutrient use efficiency under the agro-climatic conditions of South China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2022.907231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2022.907231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Xinyi Wang; Yong Ren; Umair Ashraf; Runfei Gui; Huizi Deng; Lan Dai; Xiangru Tang; Zaiman Wang; Zhaowen Mo;doi: 10.1002/jsfa.12767
pmid: 37278411
AbstractBackgroundThe use of liquid fertilizer is an effective measure to increase rice yield and nitrogen use efficiency. There has been a lack of information regarding the effects on the grain yield, biomass accumulation, and nutrient uptake in late‐season indica fragrant rice of split fertilizer application and of nitrogen management in liquid fertilizer application.ResultsA 2‐year field experiment was carried out during 2019 and 2020 with two fragrant rice cultivars grown under differing fertilizer management treatments. Results showed that the fertilization treatments affected the grain yield, yield components, biomass accumulation, and nutrient accumulation significantly. The mean nitrogen recovery efficiency with liquid fertilizer management was greater than in a control treatment corresponding to a practice commonly used by farmers (H2). The effects of nitrogen metabolism enzymes in the leaves of both rice cultivars were stronger with liquid fertilizer treatments than with H2. Grain yield was positively associated with the effective panicle number, spikelets per panicle, dry matter accumulation, N and K accumulation, and the nitrogen metabolism enzymes.ConclusionsOptimized liquid fertilizer management increases biomass accumulation, nitrogen utilization efficiency, and nitrogen metabolism. It stabilizes yields and increases the economic benefits of late‐season indica fragrant rice. © 2023 Society of Chemical Industry.
Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.12767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.12767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Muhammad Abrar; Ying Zhu; Muhammad Maqsood Ur Rehman; Asfa Batool; Hai-Xia Duan; Umair Ashraf; Muhammad Aqeel; Xiao-Fang Gong; Yi-Nan Peng; Wasim Khan; Zhi-Ye Wang; You-Cai Xiong;pmid: 38879986
Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.
Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2024.108839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Plant Physiology and... arrow_drop_down Plant Physiology and BiochemistryArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2024.108839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Shuqing Qiu; Jiaen Zhang; Meijuan Li; Benliang Zhao; Shiwei Liu; Umair Ashraf; Umair Ashraf;pmid: 30569454
AbstractBACKGROUNDA mixed‐cropping system that enhances farmland biodiversity has the potential to improve grain yield and quality; however, the impacts of growing different rice cultivars simultaneously has been rarely investigated. In the present study, five popular rice cultivars were selected and ten mixture combinations were made according to the growth period, plant height, grain yield and quality, and pest and disease resistance. Seedlings of the five cultivars and ten mixture combinations (mixed‐sowing of the seeds in an equal ratio, then mixed‐transplanting and finally mixed‐harvesting) were grown in plastic pots in a glasshouse during the early and late growing seasons in 2016.RESULTSCompared with the mono‐cropping systems in the early and late growing seasons in 2016 (paired t‐test), the mixed‐cropping systems increased the rice leaf photosynthetic rate, soil plant analysis development (SPAD) index and total aboveground dry weight. Moreover, mixed‐cropping systems improved the number of spikelets per panicle, seed‐setting rate, and grain weight per pot and harvest index by 19.52% and 5.77%, 8.53% and 4.41%, 8.31% and 4.61%, and 10.26% and 6.98% in the early and late growing seasons, respectively. In addition, mixed‐cropping systems reduced chalky rice rate and chalkiness degree by 33.12% and 43.42% and by 30.11% and 48.13% in the early and late growing seasons, respectively.CONCLUSIONThe SPAD indexes and photosynthetic rates enhanced at physiology maturity in mixed‐cropping systems may result in higher grain yield and better grain quality. In general, it was found that mixed‐cropping with different rice cultivars has the potential for increasing grain yield and improving grain quality. © 2018 Society of Chemical Industry
Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.9547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of the Scien... arrow_drop_down Journal of the Science of Food and AgricultureArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jsfa.9547&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Xiangru Tang; Umair Ashraf;pmid: 28264775
Present study was planned to assess the yield and quality responses, plant physio-biochemical characters and Pb distribution pattern in two aromatic rice cultivars viz., Guixiangzhan (GXZ) and Nongxiang-18 (NX-18) under four different Pb-levels viz., control (0), low (400), medium (800) and high (1200) mg kg-1of soil. Results revealed that Pb toxicity increased H2O2, lipid peroxidation and electrolyte leakage while inhibited photosynthetic pigments production, but such increment was higher in NX-18 than GXZ. Furthermore, Pb toxicity variably affected protein, proline and soluble sugars and the activities of enzymatic antioxidants viz., superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) and non-enzymatic anti-oxidants viz., reduced glutathione (GSH) and oxidized glutathione (GSSG) in both rice cultivars. The reductions in osmolyte accumulation and antioxidant activities were more severe in NX-18 than GXZ. Pb toxicity severely reduced yield and quality related attributes and plant biomass accumulation; however the reductions were more apparent NX-18 than GXZ. Furthermore, NX-18 accumulated less Pb proportions in roots (∼84%), and transferred more towards shoot, leaves, ears (at panicle heading (PH)) and grains (at maturity (MAT)) than GXZ (∼91% root Pb proportions). Hence, the ability of GXZ to retain higher Pb contents in roots and less towards upper plant parts, higher osmolyte accumulation and antioxidant activities and less yield reduction as compare to NX-18 might be an adaptive response of GXZ under Pb toxicity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.02.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.02.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Muhammad Rizwan; Umair Ashraf; Muhammad Zubair; Haifa Abdulaziz S. Alhaithloul; Mona H. Soliman; Mona H. Soliman; Shafaqat Ali; Shafaqat Ali; Sheharyaar Farid; Mujahid Farid; Salah M. Gowayed; Hafiz Khuzama Ishaq;pmid: 31574440
The adverse industrial activities discharged contaminated wastewater directly into the water bodies that contain toxic substances such as heavy metals. The contours use of marble industrial effluents may affect the fertility of soil and crop growth. The present study was conducted to investigate the toxic effects of marble industrial effluents (M.E) on Zea mays L under the exogenous application of citric acid (CA) with different combinations such as marble industrial effluent (0, 30%, 60%, 100%) diluted with distilled water and CA (10 mM). The results showed significant decrease in the growth of Zea mays with increasing concentration of marble industrial effluent. The maximum reduction in plant height, root length, number of leaves, leaf area and fresh and dry biomass was observed at the application of 100% M.E as compared to control. Similar to growth conditions the photosynthetic machinery and the activities of antioxidant enzymes (Superoxide dismutase (SOD), Peroxidases (POD), Catalases (CAT), Ascorbate peroxidase (APX)) was also decreased with increasing concentration of M.E. The application of CA significantly alleviated the M.E induced toxic effect on Zea mays and ameliorated the growth, biomass, photosynthesis and antioxidant enzymes activities by reducing the production of reactive oxygen species. The C.A application also enhanced the heavy metal content such as chromium (Cr), cadmium (Cd), Zinc (Zn) in different parts of Zea mays. The results concluded that the Zea mays tolerant varieties can be a potential candidate for the M.E irrigated soil and might be suitable for the phyto-extraction of Cr, Cd and Zn.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124930&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Zhaowen Mo; Zhaowen Mo; Dejun Qin; Meng Wang; Maosen Zhuang; Xuwei Liu; Yuzhan Li; Umair Ashraf; Hua Tian; Wu Li; Shuli Wang; Zhuoli Huang; Wenjun Xie;pmid: 32135442
Nitrate reductase is a nitric oxide (NO) induced enzyme in plants, NO acts as a signaling molecule under ZnO NPs-induced stress whereas melatonin (N-acetyl-5-methoxytryptamine) could improve morpho-physiological attributes of plants under adverse conditions. In present study, seedlings of two rice genotypes differed regarding nitrate reductase activities i.e., transgenic 'NR' and wild type 'WT' were applied with two melatonin levels i.e., 0, 10 μΜ regarded as M0, M10, respectively and three levels of ZnO NPs i.e., 0, 50, 500 mg L-1 regarded as ZnO NPs0, ZnO NPs50 and ZnO NPs500, respectively. Results revealed that melatonin application substantially increased the dry biomass accumulation of both rice genotypes under all ZnO NPs levels. The root growth, mineral absorption as well as the antioxidant responses were also improved by melatonin application under ZnO NPs stress. The interactive effects of melatonin and genotype on plant growth, antioxidant responses and mineral contents i.e., Zn, Na, Fe and Mn were also found significant under different ZnO NPs stress. Furthermore, total plant dry weight was significantly correlated with the leaf dry weight, root volume, catalase (CAT) activity in leaves, Na accumulation in stem sheath and Fe accumulation in root under both M0 and M10 treatments. Moreover, the comparative transcriptome analysis identified key genes which were responsible for melatonin and NO-induced modulations in plant growth under ZnO NPs stress. Overall, melatonin could improve the morphological growth of the rice plants by modulating root-shoot characteristics, antioxidant activities and mineral uptake in root and shoot of rice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.126337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2020.126337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Netherlands, Australia, AustraliaPublisher:Springer Science and Business Media LLC Saddam Hussain; Umair Ashraf; Shakeel Ahmad Anjum; Artemi Cerdà; Artemi Cerdà; Mohsin Tanveer; Mohsin Tanveer;pmid: 28083744
Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-8371-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversity of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-8371-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Frontiers Media SA Saddam Hussain; Shengnan Men; Longchang Wang; Abdul Khaliq; Shakeel Ahmad Anjum; Hafiz Athar Hussain; Umair Ashraf;Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors.
Frontiers in Plant S... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 556 citations 556 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2018.00393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Umair Ashraf; Lin Li; Tiaoyan Wu; Zaiman Wang; Xiangru Tang; Xiangru Tang; Yousef Alhaj Hamoud; Yifei Wang; Yifei Wang; Shenggang Pan; Shenggang Pan; Lixiao Nie; Zheng Zhang; Zheng Zhang; Hua Tian; Hua Tian;Abstract Increasing energy output and improving energy production efficiency is essential to ensure the long-term sustainability of rice production systems in China. Present study assessed the energy input/output and its production efficiency for manual transplanted rice with manual broadcasting fertilizer (TR-MBF), mechanical pot-seedling transplanted rice synchronized with deep fertilization (MPST-DF), and mechanical hill direct-seeding rice synchronized with deep fertilization (MHDS-DF) in a three-year field experiment. Two rice cultivars i.e., Yuxiangyouzhan (YXYZ, inbred rice) and Wufengyou615 (WFY615, hybrid rice) were used to determine the energy input/output and production efficiency of each system. Results depicted that the MHDS-DF and MPST-DF treatment substantially improved the grain yield by 20.9% and 32.3% for WFY615 and YXYZ owing to enhanced total above-ground biomass (TAB) and leaf area index (LAI), respectively. Means across years and cultivars for energy input in the TR-MBF, MPST-DF, and MHDS-DF were remained 31918.0, 35267.1 and 36036.7 MJ ha−1, respectively. The energy consumed by diesel and fertilizer for energy inputs in the production system exceeds 70% of the total energy input. Moreover, the three rice production systems were highly dependent on non-renewable energy. The highest output energy and net energy were obtained for MHDS-DF and MPST-DF treatments with 221517.2 and 185670.0 MJ ha-1, respectively. Among the three rice production systems, the highest energy use efficiency, energy productivity efficiency, energy profitability efficiency was found in MPST-DF, which was slightly higher than MHDS-DF. However, the human energy profitability efficiency of MHDS-DF treatment was significantly higher than other treatments. Therefore, MHDS-DF and MPST-DF could be best alternative technologies than conventional rice production systems with improved energy input and energy production efficiency in South China. Furthermore, both MHDS-DF and MPST-DF would also be suitable in the regions with lack of labor force for rice production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2021.108359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2021.108359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu