Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jan R. E. Taylor;
    Jan R. E. Taylor
    ORCID
    Harvested from ORCID Public Data File

    Jan R. E. Taylor in OpenAIRE
    Marion Muturi; orcid Javier Lázaro;
    Javier Lázaro
    ORCID
    Harvested from ORCID Public Data File

    Javier Lázaro in OpenAIRE
    orcid Karol Zub;
    Karol Zub
    ORCID
    Harvested from ORCID Public Data File

    Karol Zub in OpenAIRE
    +1 Authors

    AbstractGlobal climate change affects many aspects of biology and has been shown to cause body size changes in animals. However, suitable datasets allowing the analysis of long‐term relationships between body size, climate, and its effects are rare. The size of the skull is often used as a proxy for overall body size. Skull size does not change much in fully grown vertebrates; however, some high‐metabolic small mammals shrink in winter and regrow in spring, including their skull and brain. This is thought to be a winter adaptation, as a smaller brain size reduces energy requirements. Climate could thus affect not only the overall size but also the pattern of the size change, that is, Dehnel's phenomenon, in these animals. We assessed the impact of the changes in climate on the overall skull size and the different stages of Dehnel's phenomenon in skulls of the common shrew, Sorex araneus, collected over 50 years in the Białowieża Forest, E Poland. Overall skull size decreased, along with increasing temperatures and decreasing soil moisture, which affected the availability of the shrews' main food source, earthworms. The skulls of males were larger than those of females, but the degree of the decrease in size did not differ between sexes. The magnitude of Dehnel's phenomenon increased over time, indicating an increasing selection pressure on animals in winter. Overall, climate clearly affected the common shrew's overall size as well as its seasonal size changes. With the current acceleration in climate change, the effects on the populations of this cold‐adapted species may be quite severe in a large part of its distribution range.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecology and Evolutio...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecology and Evolution
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecology and Evolution
    Article . 2022
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    gold
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecology and Evolutio...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecology and Evolution
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecology and Evolution
      Article . 2022
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Paltrinieri, Laura;
    Paltrinieri, Laura
    ORCID
    Harvested from ORCID Public Data File

    Paltrinieri, Laura in OpenAIRE
    orcid Razgour, Orly;
    Razgour, Orly
    ORCID
    Harvested from ORCID Public Data File

    Razgour, Orly in OpenAIRE
    orcid bw Santini, Luca;
    Santini, Luca
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Santini, Luca in OpenAIRE
    orcid Russo, Danilo;
    Russo, Danilo
    ORCID
    Harvested from ORCID Public Data File

    Russo, Danilo in OpenAIRE
    +51 Authors

    According to Bergmann's and Allen's rules, climate change may drive morphological shifts in species, affecting body size and appendage length. These rules predict that species in colder climates tend to be larger and have shorter appendages to improve thermoregulation. Bats are thought to be sensitive to climate and are therefore expected to respond to climatic changes across space and time. We conducted a phylogenetic meta‐analysis on > 27 000 forearm length (FAL) and body mass (BM) measurements from 20 sedentary European bat species to examine body size patterns. We assessed the relationships between body size and environmental variables (winter and summer temperatures, and summer precipitation) across geographic locations, and also analysed temporal trends in body size. We found sex‐specific morphological shifts in the body size of European bats in response to temperature and precipitation patterns across space, but no clear temporal changes due to high interspecific variability. Across Europe, male FAL decreased with increasing summer and winter temperatures, and BM increased with greater precipitation. In contrast, both FAL and BM of female bats increased with summer precipitation and decreased with winter temperatures. Our data can confirm Bergmann's rule for both males and females, while females' BM variations are also related to summer precipitation, suggesting a potential link to resource availability. Allen's rule is confirmed only in males in relation to summer temperature, while in females FAL and BM decrease proportionally with increasing temperature, maintaining a constant allometric relationship incompatible with Allen's rule. This study provides new insights into sex and species‐dependent morphological changes in bat body size in response to temperature and precipitation patterns. It highlights how body size variation reflects adaptations to temperature and precipitation patterns, thus providing insights into potential species‐level morphological responses to climate change across Europe.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecographyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecography
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    HAL-UPMC
    Article . 2025
    License: CC BY
    Data sources: HAL-UPMC
    addClaim
    Access Routes
    Green
    gold
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecographyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecography
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      HAL-UPMC
      Article . 2025
      License: CC BY
      Data sources: HAL-UPMC
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid M. Teague O'Mara;
    M. Teague O'Mara
    ORCID
    Harvested from ORCID Public Data File

    M. Teague O'Mara in OpenAIRE
    M. Teague O'Mara; M. Teague O'Mara; orcid Anne K. Scharf;
    Anne K. Scharf
    ORCID
    Harvested from ORCID Public Data File

    Anne K. Scharf in OpenAIRE
    +15 Authors

    (Uploaded by Plazi for the Bat Literature Project) Atmospheric conditions impact how animals use the aerosphere, and birds and bats should modify their flight to minimize energetic expenditure relative to changing wind conditions. To investigate how free-ranging straw-colored fruit bats (Eidolon helvum) fly with changing wind support, we use data collected from bats fit with GPS loggers and an integrated triaxial accelerometer and measure flight speeds, wingbeat frequency, and overall dynamic body acceleration (ODBA) as an estimate for energetic expenditure. We predicted that if ODBA reflects energetic expenditure, then we should find a curvilinear relationship between ODBA and airspeed consistent with aerodynamic theory. We expected that bats would lower their airspeed with tailwind support and that ODBA will decrease with increasing tailwinds and increase with wingbeat frequency. We found that wingbeat frequency has the strongest positive relationship with ODBA. There was a small, but negative, relationship between airspeed and ODBA, and bats decreased ODBA with increasing tailwind. Bats flew at ground speeds of 9.6 ± 2.4 ms−1 (Mean ± SD, range: 4.3–23.9 ms−1) and airspeeds of 10.2 ± 2.5 ms−1, and did not modify their wingbeat frequency with speed. Free-ranging straw-colored fruit bats therefore exerted more total ODBA in headwinds but not when they changed their airspeed. It is possible that the flexibility in wingbeat kinematics may make flight of free-ranging bats less costly than currently predicted or alternatively that the combination of ODBA and airspeed at our scales of measurement does not reflect this relationship in straw-colored fruit bats. Further work is needed to understand the full potential of free-ranging bat flight and how well bio-logging techniques reflect the costs of bat flight.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Ecology...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Ecology and Evolution
    Article . 2019 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Ecology and Evolution
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2019
    Data sources: Datacite
    ZENODO
    Article . 2019
    Data sources: ZENODO
    ZENODO
    Article . 2019
    Data sources: Datacite
    addClaim
    Access Routes
    Green
    gold
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Ecology...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Ecology and Evolution
      Article . 2019 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Ecology and Evolution
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2019
      Data sources: Datacite
      ZENODO
      Article . 2019
      Data sources: ZENODO
      ZENODO
      Article . 2019
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sharon M. Swartz;
    Sharon M. Swartz
    ORCID
    Harvested from ORCID Public Data File

    Sharon M. Swartz in OpenAIRE
    orcid Pedro Beja;
    Pedro Beja
    ORCID
    Harvested from ORCID Public Data File

    Pedro Beja in OpenAIRE
    Pedro Beja; orcid Martina Scacco;
    Martina Scacco
    ORCID
    Harvested from ORCID Public Data File

    Martina Scacco in OpenAIRE
    +16 Authors

    (Uploaded by Plazi for the Bat Literature Project) During the day, flying animals exploit the environmental energy landscape by seeking out thermal or orographic uplift, or extracting energy from wind gradients.1–6 However, most of these energy sources are not thought to be available at night because of the lower thermal potential in the nocturnal atmosphere, as well as the difficulty of locating features that generate uplift. Despite this, several bat species have been observed hundreds to thousands of meters above the ground.7–9 Individuals make repeated, energetically costly high-altitude ascents,10–13 and others fly at some of the fastest speeds observed for powered vertebrate flight.14 We hypothesized that bats use orographic uplift to reach high altitudes,9,15–17 and that both this uplift and bat high-altitude ascents would be highly predictable.18 By superimposing detailed threedimensional GPS tracking of European free-tailed bats (Tadarida teniotis) on high-resolution regional wind data, we show that bats do indeed use the energy of orographic uplift to climb to over 1,600 m, and also that they reach maximum sustained self-powered airspeeds of 135 km h 1. We show that wind and topography can predict areas of the landscape able to support high-altitude ascents, and that bats use these locations to reach high altitudes while reducing airspeeds. Bats then integrate wind conditions to guide high-altitude ascents, deftly exploiting vertical wind energy in the nocturnal landscape.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Biologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Current Biology
    Article . 2021 . Peer-reviewed
    License: Elsevier Non-Commercial
    Data sources: Crossref
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: Datacite
    ZENODO
    Article . 2021
    Data sources: ZENODO
    addClaim
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Biologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Current Biology
      Article . 2021 . Peer-reviewed
      License: Elsevier Non-Commercial
      Data sources: Crossref
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: Datacite
      ZENODO
      Article . 2021
      Data sources: ZENODO
      addClaim
  • Authors: Paltrinieri, Laura; orcid bw Razgour, Orly;
    Razgour, Orly
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Razgour, Orly in OpenAIRE
    orcid bw Santini, Luca;
    Santini, Luca
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Santini, Luca in OpenAIRE
    orcid bw Russo, Danilo;
    Russo, Danilo
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Russo, Danilo in OpenAIRE
    +42 Authors

    According to Bergmann's and Allen's rules, climate change may drive morphological shifts in species, affecting body size and appendage length. These rules predict that species in colder climates tend to be larger and have shorter appendages to improve thermoregulation. Bats are thought to be sensitive to climate and are therefore expected to respond to climatic changes across space and time. We conducted a phylogenetic meta‐analysis on > 27 000 forearm length (FAL) and body mass (BM) measurements from 20 sedentary European bat species to examine body size patterns. We assessed the relationships between body size and environmental variables (winter and summer temperatures, and summer precipitation) across geographic locations, and also analysed temporal trends in body size. We found sex‐specific morphological shifts in the body size of European bats in response to temperature and precipitation patterns across space, but no clear temporal changes due to high interspecific variability. Across Europe, male FAL decreased with increasing summer and winter temperatures, and BM increased with greater precipitation. In contrast, both FAL and BM of female bats increased with summer precipitation and decreased with winter temperatures. Our data can confirm Bergmann's rule for both males and females, while females' BM variations are also related to summer precipitation, suggesting a potential link to resource availability. Allen's rule is confirmed only in males in relation to summer temperature, while in females FAL and BM decrease proportionally with increasing temperature, maintaining a constant allometric relationship incompatible with Allen's rule. This study provides new insights into sex and species‐dependent morphological changes in bat body size in response to temperature and precipitation patterns. It highlights how body size variation reflects adaptations to temperature and precipitation patterns, thus providing insights into potential species‐level morphological responses to climate change across Europe.

    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
Powered by OpenAIRE graph