- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 Slovenia, Austria, Italy, Portugal, Slovenia, Denmark, Slovenia, Austria, PortugalPublisher:Wiley Funded by:ANR | CONVERGENOMIX, ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran... +6 projectsANR| CONVERGENOMIX ,ARC| Linkage Projects - Grant ID: LP190100555 ,ARC| Discovery Projects - Grant ID: DP230100731 ,ANR| H2O'LYON ,ARC| Linkage Projects - Grant ID: LP190100927 ,EC| Biodiversa-plus ,ARC| Discovery Projects - Grant ID: DP180103851 ,FCT| cE3c ,EC| DARKESTSaccò, Mattia; Mammola, Stefano; Altermatt, Florian; Alther, Roman; Bolpagni, Rossano; Brancelj, Anton; Brankovits, David; Fi?er, Cene; Gerovasileiou, Vasilis; Griebler, Christian; Guareschi, Simone; Hose, Grant C.; Korbel, Kathryn; Lictevout, Elisabeth; Malard, Florian; Martínez, Alejandro; Niemiller, Matthew L.; Robertson, Anne; Tanalgo, Krizler C.; Bichuette, Maria Elina; Borko, ?pela; Brad, Traian; Campbell, Matthew A.; Cardoso, Pedro; Celico, Fulvio; Cooper, Steven J. B.; Culver, David; Di ; Lorenzo, Tiziana; Galassi, Diana M. P.; Guzik, Michelle T.; Hartland, Adam; Humphreys, William F.; Ferreira, Rodrigo Lopes; Lunghi, Enrico; Nizzoli, Daniele; Perina, Giulia; Raghavan, Rajeev; Richards, Zoe; Reboleira, Ana Sofia P. S.; Rohde, Melissa M.; Fernández, David Sánchez; Schmidt, Susanne I.; van der Heyde, Mieke; Weaver, Louise; White, Nicole E.; Zagmajster, Maja; Hogg, Ian; Ruhi, Albert; Gagnon, Marthe M.; Allentoft, Morten E.; Reinecke, Robert;pmid: 38273563
handle: 20.500.14243/452000 , 11697/220762 , 11381/2971693
AbstractGroundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium‐to‐high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science‐policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.
IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2023License: CC BY NCdCOBISS.SI Digital RepositoryArticle . 2024License: CC BY NCData sources: dCOBISS.SI Digital RepositoryUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemDigital repository of Slovenian research organizationsArticle . 2024License: CC BY NCData sources: Digital repository of Slovenian research organizationsUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2023License: CC BY NCdCOBISS.SI Digital RepositoryArticle . 2024License: CC BY NCData sources: dCOBISS.SI Digital RepositoryUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemDigital repository of Slovenian research organizationsArticle . 2024License: CC BY NCData sources: Digital repository of Slovenian research organizationsUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | CAWEBEC| CAWEBMammola, Stefano; Meierhofer, Melissa B.; Borges, Paulo A.V.; Colado, Raquel; Culver, David C.; Deharveng, Louis; Delić, Teo; Di Lorenzo, Tiziana; Dražina, Tvrtko; Ferreira, Rodrigo L.; Fiasca, Barbara; Fišer, Cene; Galassi, Diana M. P.; Garzoli, Laura; Gerovasileiou, Vasilis; Griebler, Christian; Halse, Stuart; Howarth, Francis G.; Isaia, Marco; Johnson, Joseph S.; Komerički, Ana; Martínez, Alejandro; Milano, Filippo; Moldovan, Oana T.; Nanni, Veronica; Nicolosi, Giuseppe; Niemiller, Matthew L.; Pallarés, Susana; Pavlek, Martina; Piano, Elena; Pipan, Tanja; Sanchez-Fernandez, David; Santangeli, Andrea; Schmidt, Susanne I.; Wynne, J. Judson; Zagmajster, Maja; Zakšek, Valerija; Cardoso, Pedro;Database as both excel (.xls) and tab-delimited (.csv) associated with the publication: Mammola S., et al. (2022) Towards evidence-based conservation of subterranean ecosystems. Biological Reviews, doi: 10.1111/brv.12851 Please refer to the main publication for a detailed description. Explanation of the database is available in the Database_Mammola_et_al_Metadata.pdf file uploaded alongside the database. R code to reproduce the analysis pipeline is available in GitHub: https://github.com/StefanoMammola/Analysis_Practical-Subterranean-Conservation.git Additional support is provided by the PRIN SHOWCAVE "A multidisciplinary research project to study, classify and mitigate the environmental impact in tourist caves" (project number 2017HTXT2R; funded by the Italian Ministry of Education, University and Research).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6088818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 15visibility views 15 download downloads 10 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6088818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 Italy, Portugal, PortugalPublisher:Springer Science and Business Media LLC Funded by:MIURMIURCifoni Marco; Angela Boggero; Michela Rogora; Marzia Ciampittiello; Alejandro Martínez; Diana Maria Paola Galassi; Barbara Fiasca; Tiziana Di Lorenzo;handle: 20.500.14243/443018 , 11697/194285
AbstractHuman-induced water level fluctuations (WLFs) are among the major pressures threatening lake ecosystems. Their effect on meiobenthic species of the littoral zone has been poorly investigated. In this study, we aimed at assessing the effects of human-induced WLFs on the composition and functionality of the benthic copepod assemblages of the littoral zone of Lake Maggiore, Italy and Switzerland. From 1942 to present, the water level of Lake Maggiore has been regulated through the Miorina Dam. We monitored copepod assemblages during different water levels defined within the period of regulation by the dam, using taxonomy- and trait-based metrics. We observed variation in the overall abundance and biomass of copepods, as well as in the number of individuals belonging to some trait classes such as ovigerous females, opportunists, omnivores and deposit feeders. None of the investigated trait class was completely lost. The results of our study suggest that ecosystem services supplied by the littoral zone of Lake Maggiore are likely altered by human-induced WLFs. Our findings provide a first picture of WLF impacts on benthic copepod assemblages, which can be useful for future research expanding on other functional traits.
IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2022License: CC BY NC NDUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-022-04960-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2022License: CC BY NC NDUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-022-04960-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, Italy, Finland, Croatia, Austria, Italy, Croatia, Italy, Croatia, Croatia, Brazil, Portugal, Italy, AustriaPublisher:Wiley Funded by:EC | CAWEBEC| CAWEBStefano Mammola; Melissa B. Meierhofer; Paulo A.V. Borges; Raquel Colado; David C. Culver; Louis Deharveng; Teo Delić; Tiziana Di Lorenzo; Tvrtko Dražina; Rodrigo L. Ferreira; Barbara Fiasca; Cene Fišer; Diana M. P. Galassi; Laura Garzoli; Vasilis Gerovasileiou; Christian Griebler; Stuart Halse; Francis G. Howarth; Marco Isaia; Joseph S. Johnson; Ana Komerički; Alejandro Martínez; Filippo Milano; Oana T. Moldovan; Veronica Nanni; Giuseppe Nicolosi; Matthew L. Niemiller; Susana Pallarés; Martina Pavlek; Elena Piano; Tanja Pipan; David Sanchez‐Fernandez; Andrea Santangeli; Susanne I. Schmidt; J. Judson Wynne; Maja Zagmajster; Valerija Zakšek; Pedro Cardoso;doi: 10.1111/brv.12851
pmid: 35315207
pmc: PMC9545027
handle: 20.500.14243/443908 , 10138/346047 , 11697/185714 , 2318/1844708
doi: 10.1111/brv.12851
pmid: 35315207
pmc: PMC9545027
handle: 20.500.14243/443908 , 10138/346047 , 11697/185714 , 2318/1844708
ABSTRACTSubterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution‐based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer‐reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence‐base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost‐effective, and long‐lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta‐analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert‐based information rather than scientific evidence, without quantitatively testing their effectiveness.
IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2022License: CC BY NC NDRepositório Institucional da UFLAArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIRepositório da Universidade dos AçoresArticle . 2022Data sources: Repositório da Universidade dos AçoresHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 363visibility views 363 download downloads 566 Powered bymore_vert IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2022License: CC BY NC NDRepositório Institucional da UFLAArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIRepositório da Universidade dos AçoresArticle . 2022Data sources: Repositório da Universidade dos AçoresHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, Italy, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | CAWEBEC| CAWEBTommaso Cancellario; Rafael Miranda; Enrique Baquero; Diego Fontaneto; Alejandro Martínez; Stefano Mammola;AbstractClimate change is rearranging the mosaic of biodiversity worldwide. These broad-scale species re-distributions affect the structure and composition of communities with a ripple effect on multiple biodiversity facets. Using European Odonata, we asked: i) how climate change will redefine taxonomic, phylogenetic, and functional diversity at European scales; ii) which traits will mediate species’ response to global change; iii) whether this response will be phylogenetically conserved. Using stacked species distribution models, we forecast widespread latitudinal and altitudinal rearrangements in Odonata community composition determining broad turnovers in traits and evolutionary lineages. According to our phylogenetic regression models, only body size and flight period can be partly correlated with observed range shifts. In considering all primary facets of biodiversity, our results support the design of inclusive conservation strategies able to account for the diversity of species, the ecosystem services they provide, and the phylogenetic heritage they carry in a target ecosystem.
npj Biodiversity arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s44185-022-00001-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert npj Biodiversity arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s44185-022-00001-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 Slovenia, Austria, Italy, Portugal, Slovenia, Denmark, Slovenia, Austria, PortugalPublisher:Wiley Funded by:ANR | CONVERGENOMIX, ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran... +6 projectsANR| CONVERGENOMIX ,ARC| Linkage Projects - Grant ID: LP190100555 ,ARC| Discovery Projects - Grant ID: DP230100731 ,ANR| H2O'LYON ,ARC| Linkage Projects - Grant ID: LP190100927 ,EC| Biodiversa-plus ,ARC| Discovery Projects - Grant ID: DP180103851 ,FCT| cE3c ,EC| DARKESTSaccò, Mattia; Mammola, Stefano; Altermatt, Florian; Alther, Roman; Bolpagni, Rossano; Brancelj, Anton; Brankovits, David; Fi?er, Cene; Gerovasileiou, Vasilis; Griebler, Christian; Guareschi, Simone; Hose, Grant C.; Korbel, Kathryn; Lictevout, Elisabeth; Malard, Florian; Martínez, Alejandro; Niemiller, Matthew L.; Robertson, Anne; Tanalgo, Krizler C.; Bichuette, Maria Elina; Borko, ?pela; Brad, Traian; Campbell, Matthew A.; Cardoso, Pedro; Celico, Fulvio; Cooper, Steven J. B.; Culver, David; Di ; Lorenzo, Tiziana; Galassi, Diana M. P.; Guzik, Michelle T.; Hartland, Adam; Humphreys, William F.; Ferreira, Rodrigo Lopes; Lunghi, Enrico; Nizzoli, Daniele; Perina, Giulia; Raghavan, Rajeev; Richards, Zoe; Reboleira, Ana Sofia P. S.; Rohde, Melissa M.; Fernández, David Sánchez; Schmidt, Susanne I.; van der Heyde, Mieke; Weaver, Louise; White, Nicole E.; Zagmajster, Maja; Hogg, Ian; Ruhi, Albert; Gagnon, Marthe M.; Allentoft, Morten E.; Reinecke, Robert;pmid: 38273563
handle: 20.500.14243/452000 , 11697/220762 , 11381/2971693
AbstractGroundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium‐to‐high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science‐policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.
IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2023License: CC BY NCdCOBISS.SI Digital RepositoryArticle . 2024License: CC BY NCData sources: dCOBISS.SI Digital RepositoryUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemDigital repository of Slovenian research organizationsArticle . 2024License: CC BY NCData sources: Digital repository of Slovenian research organizationsUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2023License: CC BY NCdCOBISS.SI Digital RepositoryArticle . 2024License: CC BY NCData sources: dCOBISS.SI Digital RepositoryUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULCopenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemDigital repository of Slovenian research organizationsArticle . 2024License: CC BY NCData sources: Digital repository of Slovenian research organizationsUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | CAWEBEC| CAWEBMammola, Stefano; Meierhofer, Melissa B.; Borges, Paulo A.V.; Colado, Raquel; Culver, David C.; Deharveng, Louis; Delić, Teo; Di Lorenzo, Tiziana; Dražina, Tvrtko; Ferreira, Rodrigo L.; Fiasca, Barbara; Fišer, Cene; Galassi, Diana M. P.; Garzoli, Laura; Gerovasileiou, Vasilis; Griebler, Christian; Halse, Stuart; Howarth, Francis G.; Isaia, Marco; Johnson, Joseph S.; Komerički, Ana; Martínez, Alejandro; Milano, Filippo; Moldovan, Oana T.; Nanni, Veronica; Nicolosi, Giuseppe; Niemiller, Matthew L.; Pallarés, Susana; Pavlek, Martina; Piano, Elena; Pipan, Tanja; Sanchez-Fernandez, David; Santangeli, Andrea; Schmidt, Susanne I.; Wynne, J. Judson; Zagmajster, Maja; Zakšek, Valerija; Cardoso, Pedro;Database as both excel (.xls) and tab-delimited (.csv) associated with the publication: Mammola S., et al. (2022) Towards evidence-based conservation of subterranean ecosystems. Biological Reviews, doi: 10.1111/brv.12851 Please refer to the main publication for a detailed description. Explanation of the database is available in the Database_Mammola_et_al_Metadata.pdf file uploaded alongside the database. R code to reproduce the analysis pipeline is available in GitHub: https://github.com/StefanoMammola/Analysis_Practical-Subterranean-Conservation.git Additional support is provided by the PRIN SHOWCAVE "A multidisciplinary research project to study, classify and mitigate the environmental impact in tourist caves" (project number 2017HTXT2R; funded by the Italian Ministry of Education, University and Research).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6088818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 15visibility views 15 download downloads 10 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6088818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 Italy, Portugal, PortugalPublisher:Springer Science and Business Media LLC Funded by:MIURMIURCifoni Marco; Angela Boggero; Michela Rogora; Marzia Ciampittiello; Alejandro Martínez; Diana Maria Paola Galassi; Barbara Fiasca; Tiziana Di Lorenzo;handle: 20.500.14243/443018 , 11697/194285
AbstractHuman-induced water level fluctuations (WLFs) are among the major pressures threatening lake ecosystems. Their effect on meiobenthic species of the littoral zone has been poorly investigated. In this study, we aimed at assessing the effects of human-induced WLFs on the composition and functionality of the benthic copepod assemblages of the littoral zone of Lake Maggiore, Italy and Switzerland. From 1942 to present, the water level of Lake Maggiore has been regulated through the Miorina Dam. We monitored copepod assemblages during different water levels defined within the period of regulation by the dam, using taxonomy- and trait-based metrics. We observed variation in the overall abundance and biomass of copepods, as well as in the number of individuals belonging to some trait classes such as ovigerous females, opportunists, omnivores and deposit feeders. None of the investigated trait class was completely lost. The results of our study suggest that ecosystem services supplied by the littoral zone of Lake Maggiore are likely altered by human-induced WLFs. Our findings provide a first picture of WLF impacts on benthic copepod assemblages, which can be useful for future research expanding on other functional traits.
IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2022License: CC BY NC NDUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-022-04960-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2022License: CC BY NC NDUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10750-022-04960-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, Italy, Finland, Croatia, Austria, Italy, Croatia, Italy, Croatia, Croatia, Brazil, Portugal, Italy, AustriaPublisher:Wiley Funded by:EC | CAWEBEC| CAWEBStefano Mammola; Melissa B. Meierhofer; Paulo A.V. Borges; Raquel Colado; David C. Culver; Louis Deharveng; Teo Delić; Tiziana Di Lorenzo; Tvrtko Dražina; Rodrigo L. Ferreira; Barbara Fiasca; Cene Fišer; Diana M. P. Galassi; Laura Garzoli; Vasilis Gerovasileiou; Christian Griebler; Stuart Halse; Francis G. Howarth; Marco Isaia; Joseph S. Johnson; Ana Komerički; Alejandro Martínez; Filippo Milano; Oana T. Moldovan; Veronica Nanni; Giuseppe Nicolosi; Matthew L. Niemiller; Susana Pallarés; Martina Pavlek; Elena Piano; Tanja Pipan; David Sanchez‐Fernandez; Andrea Santangeli; Susanne I. Schmidt; J. Judson Wynne; Maja Zagmajster; Valerija Zakšek; Pedro Cardoso;doi: 10.1111/brv.12851
pmid: 35315207
pmc: PMC9545027
handle: 20.500.14243/443908 , 10138/346047 , 11697/185714 , 2318/1844708
doi: 10.1111/brv.12851
pmid: 35315207
pmc: PMC9545027
handle: 20.500.14243/443908 , 10138/346047 , 11697/185714 , 2318/1844708
ABSTRACTSubterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution‐based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer‐reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence‐base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost‐effective, and long‐lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta‐analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert‐based information rather than scientific evidence, without quantitatively testing their effectiveness.
IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2022License: CC BY NC NDRepositório Institucional da UFLAArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIRepositório da Universidade dos AçoresArticle . 2022Data sources: Repositório da Universidade dos AçoresHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 363visibility views 363 download downloads 566 Powered bymore_vert IRIS Cnr arrow_drop_down Archivio Istituzionale della Ricerca - Università degli Studi dell AquilaArticle . 2022License: CC BY NC NDRepositório Institucional da UFLAArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2022Data sources: Croatian Scientific Bibliography - CROSBIRepositório da Universidade dos AçoresArticle . 2022Data sources: Repositório da Universidade dos AçoresHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, Italy, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | CAWEBEC| CAWEBTommaso Cancellario; Rafael Miranda; Enrique Baquero; Diego Fontaneto; Alejandro Martínez; Stefano Mammola;AbstractClimate change is rearranging the mosaic of biodiversity worldwide. These broad-scale species re-distributions affect the structure and composition of communities with a ripple effect on multiple biodiversity facets. Using European Odonata, we asked: i) how climate change will redefine taxonomic, phylogenetic, and functional diversity at European scales; ii) which traits will mediate species’ response to global change; iii) whether this response will be phylogenetically conserved. Using stacked species distribution models, we forecast widespread latitudinal and altitudinal rearrangements in Odonata community composition determining broad turnovers in traits and evolutionary lineages. According to our phylogenetic regression models, only body size and flight period can be partly correlated with observed range shifts. In considering all primary facets of biodiversity, our results support the design of inclusive conservation strategies able to account for the diversity of species, the ecosystem services they provide, and the phylogenetic heritage they carry in a target ecosystem.
npj Biodiversity arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s44185-022-00001-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert npj Biodiversity arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s44185-022-00001-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu