- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Guillou, Nathan; Tauveron, Nicolas; Phan, Hai Trieu; Le Pierrès, Nolwenn;Ejector refrigeration cycles offer an alternative to traditional systems for the production of cooling using low temperature heat. In this paper, a real gas thermodynamic model based on the mass flow rate maximisation is presented. This model has the advantage of simplifying the calculation algorithm and avoiding a complex description of the double choking mechanism taking place within the ejector. First, the model hypothesis and calculation algorithm are presented. The impact of each efficiency is evaluated and a tuning procedure is developed to calibrate the model on experimental data. Validation is performed on multiple datasets relative to two different fluids: R600a and R134a. The ejector model is then used to simulate a SERS (single ejector refrigeration system) cycle, to validate its robustness and capability to be used in the prediction of thermodynamic cycles performance. A comparative analysis of different fluids is carried out on the SERS, highlighting the important role played by the choice of the superheating. Finally, the model is used to predict performance in the case of a two-phase primary flow pointing out the limits of the model and the need of further experimental studies for the inclusion of appropriate semi-empirical corrections.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983505Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2022.101615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983505Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2022.101615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Guillou, Nathan; Tauveron, Nicolas; Phan, Hai Trieu; Le Pierrès, Nolwenn;Ejector refrigeration cycles offer an alternative to traditional systems for the production of cooling using low temperature heat. In this paper, a real gas thermodynamic model based on the mass flow rate maximisation is presented. This model has the advantage of simplifying the calculation algorithm and avoiding a complex description of the double choking mechanism taking place within the ejector. First, the model hypothesis and calculation algorithm are presented. The impact of each efficiency is evaluated and a tuning procedure is developed to calibrate the model on experimental data. Validation is performed on multiple datasets relative to two different fluids: R600a and R134a. The ejector model is then used to simulate a SERS (single ejector refrigeration system) cycle, to validate its robustness and capability to be used in the prediction of thermodynamic cycles performance. A comparative analysis of different fluids is carried out on the SERS, highlighting the important role played by the choice of the superheating. Finally, the model is used to predict performance in the case of a two-phase primary flow pointing out the limits of the model and the need of further experimental studies for the inclusion of appropriate semi-empirical corrections.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983505Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2022.101615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983505Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2022.101615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;International audience
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2022.123311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2022.123311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;International audience
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2022.123311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2022.123311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;The present experimental work investigates the impact of an innovative falling-film and plate combined generator, associating vapor production and purification, on the performance of an NH3–H2O absorption chiller of 5-kW cooling capacity. The impact of the flooding of the lower part of the exchanger on the performance of the machine is investigated: It decreases the COP by 33% and cooling capacity by 38%. Solution sub-cooling at the combined generator inlet improves the purity of the ammonia vapor produced, but degrades the performance of the chiller. A design of experiments is defined to characterize the performance of the combined generator, which is highly impacted by the solution mass flowrate and concentration. Then, two correlation forms are used to predict the performance, and the adapted NTU model yields better results. Finally, for an air-conditioning application, a low solution mass flowrate allows the energy consumption to be reduced by approximately 15% but it requires a higher temperature for the heat source; while the increase in the solution mass flowrate degrades the performance but enables the machine to self-regulate at a low heat source.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2022.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2022.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;The present experimental work investigates the impact of an innovative falling-film and plate combined generator, associating vapor production and purification, on the performance of an NH3–H2O absorption chiller of 5-kW cooling capacity. The impact of the flooding of the lower part of the exchanger on the performance of the machine is investigated: It decreases the COP by 33% and cooling capacity by 38%. Solution sub-cooling at the combined generator inlet improves the purity of the ammonia vapor produced, but degrades the performance of the chiller. A design of experiments is defined to characterize the performance of the combined generator, which is highly impacted by the solution mass flowrate and concentration. Then, two correlation forms are used to predict the performance, and the adapted NTU model yields better results. Finally, for an air-conditioning application, a low solution mass flowrate allows the energy consumption to be reduced by approximately 15% but it requires a higher temperature for the heat source; while the increase in the solution mass flowrate degrades the performance but enables the machine to self-regulate at a low heat source.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2022.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2022.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Springer Science and Business Media LLC Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;This study presents the numerical development of a generator–rectifier combined component (called a “combined-generator”) composed of plate heat exchangers, designed and meant to be integrated in a single-stage ammonia–water absorption cooling system. Investigations are made to find the most compact and efficient design. Numerical simulations are presented describing parameters such as the ammonia fraction in the vapor produced and the combined generator efficiency as a function of the inlet temperatures or mass flow rate of the heat transfer fluid. The combined generator produces vapor with a high ammonia mass fraction and high mass efficiency for a solution inlet temperature range of [315–320 K] and a mass flow rate of the heat transfer fluid between [0.4 and 0.6 kg.s−1]. The impacts of the length and number of plates as well as the adiabatic/heated ratio of the plates are also examined. The ammonia fraction increases with the increase in the adiabatic/heated ratio, and the combined generator efficiency increases with the increase in the plate aspect ratio of length/width. The proposed system is developed to be operated in compact and medium-capacity absorption chillers (approximately 5 kW cold) for air-conditioning.
Heat and Mass Transf... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-021-03111-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Heat and Mass Transf... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-021-03111-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Springer Science and Business Media LLC Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;This study presents the numerical development of a generator–rectifier combined component (called a “combined-generator”) composed of plate heat exchangers, designed and meant to be integrated in a single-stage ammonia–water absorption cooling system. Investigations are made to find the most compact and efficient design. Numerical simulations are presented describing parameters such as the ammonia fraction in the vapor produced and the combined generator efficiency as a function of the inlet temperatures or mass flow rate of the heat transfer fluid. The combined generator produces vapor with a high ammonia mass fraction and high mass efficiency for a solution inlet temperature range of [315–320 K] and a mass flow rate of the heat transfer fluid between [0.4 and 0.6 kg.s−1]. The impacts of the length and number of plates as well as the adiabatic/heated ratio of the plates are also examined. The ammonia fraction increases with the increase in the adiabatic/heated ratio, and the combined generator efficiency increases with the increase in the plate aspect ratio of length/width. The proposed system is developed to be operated in compact and medium-capacity absorption chillers (approximately 5 kW cold) for air-conditioning.
Heat and Mass Transf... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-021-03111-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Heat and Mass Transf... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-021-03111-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Le Pierrès, Nolwenn; Tauveron, Nicolas; Chandez, Bertrand; Phan, Hai Trieu;International audience
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Le Pierrès, Nolwenn; Tauveron, Nicolas; Chandez, Bertrand; Phan, Hai Trieu;International audience
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Voeltzel, N.; Phan, H.T.; Blondel, Q.; Gonzalez, B.; Tauveron, N.;Abstract Absorption cycles cogenerating cooling and power are anticipated to show favorable performances compared to separate generation systems. Through several models and a few prototypes, different studies validated the ability of cogeneration cycles to work with low-grade heat (lower than 200 °C). The present work aims to characterize and optimize a water-ammonia based cogeneration system of small capacity (cooling production: 5 kW, electricity production: 1 kW). Firstly, an accurate model of a scroll expander is implemented in a complete cogeneration cycle to simulate the power production. The effects on the expander of both the water/ammonia fraction and temperature of the expanded fluid are analyzed, providing a better understanding of the impacts of the rectifier and of the super-heater on the global cycle performances. Secondly, to foresee the cycle performance, a dual-objective optimization algorithm maximizes both cooling and power production according to variable temperature sources. Finally, the dynamic behavior of the cycle is investigated through transient simulations. Such complex systems present significant inertia when starting or switching from one production mode to another (between cooling and power). This study provides some insight on the most critical elements of the cycle.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-03491630Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2020.100650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-03491630Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2020.100650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Voeltzel, N.; Phan, H.T.; Blondel, Q.; Gonzalez, B.; Tauveron, N.;Abstract Absorption cycles cogenerating cooling and power are anticipated to show favorable performances compared to separate generation systems. Through several models and a few prototypes, different studies validated the ability of cogeneration cycles to work with low-grade heat (lower than 200 °C). The present work aims to characterize and optimize a water-ammonia based cogeneration system of small capacity (cooling production: 5 kW, electricity production: 1 kW). Firstly, an accurate model of a scroll expander is implemented in a complete cogeneration cycle to simulate the power production. The effects on the expander of both the water/ammonia fraction and temperature of the expanded fluid are analyzed, providing a better understanding of the impacts of the rectifier and of the super-heater on the global cycle performances. Secondly, to foresee the cycle performance, a dual-objective optimization algorithm maximizes both cooling and power production according to variable temperature sources. Finally, the dynamic behavior of the cycle is investigated through transient simulations. Such complex systems present significant inertia when starting or switching from one production mode to another (between cooling and power). This study provides some insight on the most critical elements of the cycle.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-03491630Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2020.100650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-03491630Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2020.100650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Phan, Hai Trieu; Wirtz, Mathilde; Tauveron, Nicolas; Le Pierrès, Nolwenn;International audience
HAL-CEA arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL-CEA arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Phan, Hai Trieu; Wirtz, Mathilde; Tauveron, Nicolas; Le Pierrès, Nolwenn;International audience
HAL-CEA arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL-CEA arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Phan, Hai Trieu; Tauveron, Nicolas; Le Pierrès, Nolwenn; Arteconi, Alessia;Thermodynamic and exergoeconomic assessment of a combined cooling and power cycle Study based on an existing ammonia water experimental prototype Scale-up of the considered plant predicted to reach exergy efficiency around 24% Unit cost of produced exergy of 28.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983508Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.116686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983508Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.116686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Phan, Hai Trieu; Tauveron, Nicolas; Le Pierrès, Nolwenn; Arteconi, Alessia;Thermodynamic and exergoeconomic assessment of a combined cooling and power cycle Study based on an existing ammonia water experimental prototype Scale-up of the considered plant predicted to reach exergy efficiency around 24% Unit cost of produced exergy of 28.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983508Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.116686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983508Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.116686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Cellule MathDoc/Centre Mersenne Philippe Marty; Hai Trieu Phan; Nadia Caney; Stéphane Colasson; Jérôme Gavillet;Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20 ◦ to 110 ◦ by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon. To cite this article: H.T. Phan et al., C. R. Mecanique 337 (2009).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crme.2009.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 89 citations 89 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crme.2009.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Cellule MathDoc/Centre Mersenne Philippe Marty; Hai Trieu Phan; Nadia Caney; Stéphane Colasson; Jérôme Gavillet;Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20 ◦ to 110 ◦ by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon. To cite this article: H.T. Phan et al., C. R. Mecanique 337 (2009).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crme.2009.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 89 citations 89 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crme.2009.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Guillou, Nathan; Tauveron, Nicolas; Phan, Hai Trieu; Le Pierrès, Nolwenn;Ejector refrigeration cycles offer an alternative to traditional systems for the production of cooling using low temperature heat. In this paper, a real gas thermodynamic model based on the mass flow rate maximisation is presented. This model has the advantage of simplifying the calculation algorithm and avoiding a complex description of the double choking mechanism taking place within the ejector. First, the model hypothesis and calculation algorithm are presented. The impact of each efficiency is evaluated and a tuning procedure is developed to calibrate the model on experimental data. Validation is performed on multiple datasets relative to two different fluids: R600a and R134a. The ejector model is then used to simulate a SERS (single ejector refrigeration system) cycle, to validate its robustness and capability to be used in the prediction of thermodynamic cycles performance. A comparative analysis of different fluids is carried out on the SERS, highlighting the important role played by the choice of the superheating. Finally, the model is used to predict performance in the case of a two-phase primary flow pointing out the limits of the model and the need of further experimental studies for the inclusion of appropriate semi-empirical corrections.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983505Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2022.101615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983505Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2022.101615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Guillou, Nathan; Tauveron, Nicolas; Phan, Hai Trieu; Le Pierrès, Nolwenn;Ejector refrigeration cycles offer an alternative to traditional systems for the production of cooling using low temperature heat. In this paper, a real gas thermodynamic model based on the mass flow rate maximisation is presented. This model has the advantage of simplifying the calculation algorithm and avoiding a complex description of the double choking mechanism taking place within the ejector. First, the model hypothesis and calculation algorithm are presented. The impact of each efficiency is evaluated and a tuning procedure is developed to calibrate the model on experimental data. Validation is performed on multiple datasets relative to two different fluids: R600a and R134a. The ejector model is then used to simulate a SERS (single ejector refrigeration system) cycle, to validate its robustness and capability to be used in the prediction of thermodynamic cycles performance. A comparative analysis of different fluids is carried out on the SERS, highlighting the important role played by the choice of the superheating. Finally, the model is used to predict performance in the case of a two-phase primary flow pointing out the limits of the model and the need of further experimental studies for the inclusion of appropriate semi-empirical corrections.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983505Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2022.101615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983505Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThermal Science and Engineering ProgressArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2022.101615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;International audience
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2022.123311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2022.123311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;International audience
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2022.123311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2022.123311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;The present experimental work investigates the impact of an innovative falling-film and plate combined generator, associating vapor production and purification, on the performance of an NH3–H2O absorption chiller of 5-kW cooling capacity. The impact of the flooding of the lower part of the exchanger on the performance of the machine is investigated: It decreases the COP by 33% and cooling capacity by 38%. Solution sub-cooling at the combined generator inlet improves the purity of the ammonia vapor produced, but degrades the performance of the chiller. A design of experiments is defined to characterize the performance of the combined generator, which is highly impacted by the solution mass flowrate and concentration. Then, two correlation forms are used to predict the performance, and the adapted NTU model yields better results. Finally, for an air-conditioning application, a low solution mass flowrate allows the energy consumption to be reduced by approximately 15% but it requires a higher temperature for the heat source; while the increase in the solution mass flowrate degrades the performance but enables the machine to self-regulate at a low heat source.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2022.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2022.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;The present experimental work investigates the impact of an innovative falling-film and plate combined generator, associating vapor production and purification, on the performance of an NH3–H2O absorption chiller of 5-kW cooling capacity. The impact of the flooding of the lower part of the exchanger on the performance of the machine is investigated: It decreases the COP by 33% and cooling capacity by 38%. Solution sub-cooling at the combined generator inlet improves the purity of the ammonia vapor produced, but degrades the performance of the chiller. A design of experiments is defined to characterize the performance of the combined generator, which is highly impacted by the solution mass flowrate and concentration. Then, two correlation forms are used to predict the performance, and the adapted NTU model yields better results. Finally, for an air-conditioning application, a low solution mass flowrate allows the energy consumption to be reduced by approximately 15% but it requires a higher temperature for the heat source; while the increase in the solution mass flowrate degrades the performance but enables the machine to self-regulate at a low heat source.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2022.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2022.07.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Springer Science and Business Media LLC Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;This study presents the numerical development of a generator–rectifier combined component (called a “combined-generator”) composed of plate heat exchangers, designed and meant to be integrated in a single-stage ammonia–water absorption cooling system. Investigations are made to find the most compact and efficient design. Numerical simulations are presented describing parameters such as the ammonia fraction in the vapor produced and the combined generator efficiency as a function of the inlet temperatures or mass flow rate of the heat transfer fluid. The combined generator produces vapor with a high ammonia mass fraction and high mass efficiency for a solution inlet temperature range of [315–320 K] and a mass flow rate of the heat transfer fluid between [0.4 and 0.6 kg.s−1]. The impacts of the length and number of plates as well as the adiabatic/heated ratio of the plates are also examined. The ammonia fraction increases with the increase in the adiabatic/heated ratio, and the combined generator efficiency increases with the increase in the plate aspect ratio of length/width. The proposed system is developed to be operated in compact and medium-capacity absorption chillers (approximately 5 kW cold) for air-conditioning.
Heat and Mass Transf... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-021-03111-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Heat and Mass Transf... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-021-03111-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Springer Science and Business Media LLC Authors: Wirtz, Mathilde; Stutz, Benoit; Phan, Hai Trieu; Boudehenn, François;This study presents the numerical development of a generator–rectifier combined component (called a “combined-generator”) composed of plate heat exchangers, designed and meant to be integrated in a single-stage ammonia–water absorption cooling system. Investigations are made to find the most compact and efficient design. Numerical simulations are presented describing parameters such as the ammonia fraction in the vapor produced and the combined generator efficiency as a function of the inlet temperatures or mass flow rate of the heat transfer fluid. The combined generator produces vapor with a high ammonia mass fraction and high mass efficiency for a solution inlet temperature range of [315–320 K] and a mass flow rate of the heat transfer fluid between [0.4 and 0.6 kg.s−1]. The impacts of the length and number of plates as well as the adiabatic/heated ratio of the plates are also examined. The ammonia fraction increases with the increase in the adiabatic/heated ratio, and the combined generator efficiency increases with the increase in the plate aspect ratio of length/width. The proposed system is developed to be operated in compact and medium-capacity absorption chillers (approximately 5 kW cold) for air-conditioning.
Heat and Mass Transf... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-021-03111-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Heat and Mass Transf... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00231-021-03111-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Le Pierrès, Nolwenn; Tauveron, Nicolas; Chandez, Bertrand; Phan, Hai Trieu;International audience
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Le Pierrès, Nolwenn; Tauveron, Nicolas; Chandez, Bertrand; Phan, Hai Trieu;International audience
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalUniversité Savoie Mont Blanc: HALArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.121026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Voeltzel, N.; Phan, H.T.; Blondel, Q.; Gonzalez, B.; Tauveron, N.;Abstract Absorption cycles cogenerating cooling and power are anticipated to show favorable performances compared to separate generation systems. Through several models and a few prototypes, different studies validated the ability of cogeneration cycles to work with low-grade heat (lower than 200 °C). The present work aims to characterize and optimize a water-ammonia based cogeneration system of small capacity (cooling production: 5 kW, electricity production: 1 kW). Firstly, an accurate model of a scroll expander is implemented in a complete cogeneration cycle to simulate the power production. The effects on the expander of both the water/ammonia fraction and temperature of the expanded fluid are analyzed, providing a better understanding of the impacts of the rectifier and of the super-heater on the global cycle performances. Secondly, to foresee the cycle performance, a dual-objective optimization algorithm maximizes both cooling and power production according to variable temperature sources. Finally, the dynamic behavior of the cycle is investigated through transient simulations. Such complex systems present significant inertia when starting or switching from one production mode to another (between cooling and power). This study provides some insight on the most critical elements of the cycle.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-03491630Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2020.100650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-03491630Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2020.100650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Elsevier BV Voeltzel, N.; Phan, H.T.; Blondel, Q.; Gonzalez, B.; Tauveron, N.;Abstract Absorption cycles cogenerating cooling and power are anticipated to show favorable performances compared to separate generation systems. Through several models and a few prototypes, different studies validated the ability of cogeneration cycles to work with low-grade heat (lower than 200 °C). The present work aims to characterize and optimize a water-ammonia based cogeneration system of small capacity (cooling production: 5 kW, electricity production: 1 kW). Firstly, an accurate model of a scroll expander is implemented in a complete cogeneration cycle to simulate the power production. The effects on the expander of both the water/ammonia fraction and temperature of the expanded fluid are analyzed, providing a better understanding of the impacts of the rectifier and of the super-heater on the global cycle performances. Secondly, to foresee the cycle performance, a dual-objective optimization algorithm maximizes both cooling and power production according to variable temperature sources. Finally, the dynamic behavior of the cycle is investigated through transient simulations. Such complex systems present significant inertia when starting or switching from one production mode to another (between cooling and power). This study provides some insight on the most critical elements of the cycle.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-03491630Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2020.100650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2020License: CC BY NCFull-Text: https://hal.science/hal-03491630Data sources: Bielefeld Academic Search Engine (BASE)Thermal Science and Engineering ProgressArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tsep.2020.100650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Phan, Hai Trieu; Wirtz, Mathilde; Tauveron, Nicolas; Le Pierrès, Nolwenn;International audience
HAL-CEA arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL-CEA arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Phan, Hai Trieu; Wirtz, Mathilde; Tauveron, Nicolas; Le Pierrès, Nolwenn;International audience
HAL-CEA arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert HAL-CEA arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Phan, Hai Trieu; Tauveron, Nicolas; Le Pierrès, Nolwenn; Arteconi, Alessia;Thermodynamic and exergoeconomic assessment of a combined cooling and power cycle Study based on an existing ammonia water experimental prototype Scale-up of the considered plant predicted to reach exergy efficiency around 24% Unit cost of produced exergy of 28.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983508Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.116686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983508Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.116686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Funded by:EC | NUMERICSEC| NUMERICSBraccio, Simone; Phan, Hai Trieu; Tauveron, Nicolas; Le Pierrès, Nolwenn; Arteconi, Alessia;Thermodynamic and exergoeconomic assessment of a combined cooling and power cycle Study based on an existing ammonia water experimental prototype Scale-up of the considered plant predicted to reach exergy efficiency around 24% Unit cost of produced exergy of 28.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983508Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.116686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2023Full-Text: https://hal.science/hal-03983508Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.116686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Cellule MathDoc/Centre Mersenne Philippe Marty; Hai Trieu Phan; Nadia Caney; Stéphane Colasson; Jérôme Gavillet;Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20 ◦ to 110 ◦ by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon. To cite this article: H.T. Phan et al., C. R. Mecanique 337 (2009).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crme.2009.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 89 citations 89 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crme.2009.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Cellule MathDoc/Centre Mersenne Philippe Marty; Hai Trieu Phan; Nadia Caney; Stéphane Colasson; Jérôme Gavillet;Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20 ◦ to 110 ◦ by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon. To cite this article: H.T. Phan et al., C. R. Mecanique 337 (2009).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crme.2009.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 89 citations 89 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.crme.2009.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu