- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Spain, Canada, Portugal, Spain, France, Canada, Spain, Portugal, SpainPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, EC | BIODESERT +3 projectsARC| Discovery Projects - Grant ID: DP210102593 ,EC| DRYFUN ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,FCT| CEECIND/02453/2018/CP1534/CT0001 ,DFG| EarthShape: Earth Surface Shaping by BiotaGross, Nicolas; Maestre, Fernando; Liancourt, Pierre; Berdugo, Miguel; Martin, Raphaël; Gozalo, Beatriz; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Maire, Vincent; Saiz, Hugo; Soliveres, Santiago; Valencia, Enrique; Eldridge, David; Guirado, Emilio; Jabot, Franck; Asensio, Sergio; Gaitán, Juan; García-Gómez, Miguel; Martínez, Paloma; Martínez-Valderrama, Jaime; Mendoza, Betty; Moreno-Jiménez, Eduardo; Pescador, David; Plaza, César; Pijuan, Ivan Santaolaria; Abedi, Mehdi; Ahumada, Rodrigo; Amghar, Fateh; Arroyo, Antonio; Bahalkeh, Khadijeh; Bailey, Lydia; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; van den Brink, Liesbeth; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea del P.; Castro, Helena; Castro, Patricio; Chibani, Roukaya; Conceição, Abel Augusto; Darrouzet-Nardi, Anthony; Davila, Yvonne; Deák, Balázs; Donoso, David; Durán, Jorge; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Franzese, Jorgelina; Fraser, Lauchlan; Gonzalez, Sofía; Gusman-Montalvan, Elizabeth; Hernández-Hernández, Rosa Mary; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Jadan, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Le Roux, Peter; Linstädter, Anja; Louw, Michelle; Mabaso, Mancha; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Margerie, Pierre; Hughes, Frederic Mendes; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gaston; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Ramírez-Iglesias, Elizabeth; Reed, Sasha; Rey, Pedro; Reyes Gómez, Víctor; Rodríguez, Alexandra; Rolo, Victor; Rubalcaba, Juan; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Phokgedi Julius; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Undrakhbold, Sainbileg; Val, James; Valkó, Orsolya; Velbert, Frederike; Wamiti, Wanyoike; Wang, Lixin; Wang, Deli; Wardle, Glenda; Wolff, Peter; Yahdjian, Laura; Yari, Reza; Zaady, Eli; Zeberio, Juan Manuel; Zhang, Yuanling; Zhou, Xiaobing; Le Bagousse-Pinguet, Yoann;Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 133 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United States, Belgium, France, United States, Belgium, Australia, France, FrancePublisher:Wiley Publicly fundedFunded by:NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi..., FCT | LA 1 +2 projectsNSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,FCT| LA 1 ,EC| IMBALANCE-P ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and modelsKevin Van Sundert; Carly J. Stevens; Johannes M. H. Knops; Martin Schütz; Risto Virtanen; Lori A. Biederman; Xavier Raynaud; Philip A. Fay; Anne Ebeling; Ian Donohue; Amandine Hansart; Andrew S. MacDougall; Christiane Roscher; Eric W. Seabloom; Harry Olde Venterink; Anita C. Risch; Elizabeth T. Borer; Glenda M. Wardle; Timothy Ohlert; Dajana Radujković; Jane A. Catford; Elizabeth H. Boughton; Maria L. Silveira; Peter D. Wragg; Michael Bahn; Sara Vicca; Erik Verbruggen; Anu Eskelinen; Anu Eskelinen; Matteo Campioli;doi: 10.1111/ele.13894
pmid: 34617374
AbstractFertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory‐driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co‐limitation by NP and micronutrients.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalKing's College, London: Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalKing's College, London: Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Norway, Czech Republic, Australia, Germany, Norway, Czech Republic, Norway, Italy, Canada, SpainPublisher:Wiley Publicly fundedFunded by:SFI | POPSTAR-SFI: Plant popula..., NSERCSFI| POPSTAR-SFI: Plant population strategy and response to the environment ,NSERCPil U. Rasmussen; Richard P. Duncan; Judit Bódis; Simone Ravetto Enri; Benedicte Bachelot; Anna Mária Csergő; Anna Mária Csergő; Jesús Villellas; Jesús Villellas; Alain Finn; R. Groenteman; Sergi Munné-Bosch; John M. Dwyer; John M. Dwyer; Lauchlan H. Fraser; Gregory E. Vose; Anna Roeder; Elizabeth E. Crone; Matthew Coghill; Annabel L. Smith; Annabel L. Smith; Ruth Kelly; Satu Ramula; Olav Skarpaas; Ayco J. M. Tack; Christina M. Caruso; Astrid Wingler; Bret D. Elderd; Anna-Liisa Laine; Anna-Liisa Laine; Dylan Z. Childs; Aveliina Helm; Christiane Roscher; Paloma Nuche; Aldo Compagnoni; Anna Bucharova; Anna Bucharova; Emily Griffoul; Peter A. Vesk; Zuzana Münzbergová; Zuzana Münzbergová; Cheryl B. Schultz; Adrian Oprea; Meelis Pärtel; Siri Lie Olsen; Aryana Ferguson; Deborah A. Roach; Joachim Töpper; Michele Lonati; Roberto Salguero-Gómez; Roberto Salguero-Gómez; Roberto Salguero-Gómez; Liv Norunn Hamre; William K. Petry; Yvonne M. Buckley; Yvonne M. Buckley; María B. García; Johan Ehrlén; Glenda M. Wardle; Lauri Laanisto; Elizabeth M. Wandrag; Elizabeth M. Wandrag; Jane A. Catford; Jane A. Catford;doi: 10.1111/ele.13858
pmid: 34355467
handle: 10852/88810 , 11250/2789028 , 20.500.14352/4825 , 10214/28923 , 2318/1800379 , 11343/289531 , 10900/131717
doi: 10.1111/ele.13858
pmid: 34355467
handle: 10852/88810 , 11250/2789028 , 20.500.14352/4825 , 10214/28923 , 2318/1800379 , 11343/289531 , 10900/131717
AbstractGenetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short‐lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short‐term perturbations. Combining a multi‐treatment greenhouse experiment with observational field data throughout the range of a widespread short‐lived herb,Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field‐observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.
CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10852/88810Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/11343/289531Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesDSpace at the University of Guelph (Atrium)Article . 2021License: CC BY NCData sources: DSpace at the University of Guelph (Atrium)Eberhard Karls University Tübingen: Publication SystemArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10852/88810Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/11343/289531Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesDSpace at the University of Guelph (Atrium)Article . 2021License: CC BY NCData sources: DSpace at the University of Guelph (Atrium)Eberhard Karls University Tübingen: Publication SystemArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | NEON RCN: The Ecological ...NSF| NEON RCN: The Ecological Forecasting Initiative RCN: Using NEON-enabled near-term forecasting to synthesize our understanding of predictability across ecological systems and scalesMichael Dietze; Ethan P. White; Antoinette Abeyta; Carl Boettiger; Nievita Bueno Watts; Cayelan C. Carey; Rebecca Chaplin-Kramer; Ryan E. Emanuel; S. K. Morgan Ernest; Renato J. Figueiredo; Michael D. Gerst; Leah R. Johnson; Melissa A. Kenney; Jason S. McLachlan; Ioannis Ch. Paschalidis; Jody A. Peters; Christine R. Rollinson; Juniper Simonis; Kira Sullivan-Wiley; R. Quinn Thomas; Glenda M. Wardle; Alyssa M. Willson; Jacob Zwart;handle: 10919/122612
A substantial increase in predictive capacity is needed to anticipate and mitigate the widespread change in ecosystems and their services in the face of climate and biodiversity crises. In this era of accelerating change, we cannot rely on historical patterns or focus primarily on long-term projections that extend decades into the future. In this Perspective, we discuss the potential of near-term (daily to decadal) iterative ecological forecasting to improve decision-making on actionable time frames. We summarize the current status of ecological forecasting and focus on how to scale up, build on lessons from weather forecasting, and take advantage of recent technological advances. We also highlight the need to focus on equity, workforce development, and broad cross-disciplinary and non-academic partnerships. This work was supported by the NSF Research Coordination Network under grant number 1926388 and an Alfred P. Sloan Foundation grant. Published version
VTechWorks arrow_drop_down Nature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02182-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert VTechWorks arrow_drop_down Nature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02182-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Portugal, Germany, South Africa, United States, United States, Spain, Spain, Portugal, Spain, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | eLTER PLUS, EC | BIODESERT, EC | AGREENSKILLSPLUS +2 projectsEC| eLTER PLUS ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,EC| DRYFUN ,EC| TUdiAuthors: Maestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; +127 AuthorsMaestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; Saiz, Hugo; Berdugo, Miguel; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Gaitán, Juan; Asensio, Sergio; Mendoza, Betty; Plaza, César; Díaz-Martínez, Paloma; Rey, Ana; Hu, Hang-Wei; He, Ji-Zheng; Wang, Jun-Tao; Lehmann, Anika; Rillig, Matthias; Cesarz, Simone; Eisenhauer, Nico; Martínez-Valderrama, Jaime; Moreno-Jiménez, Eduardo; Sala, Osvaldo; Abedi, Mehdi; Ahmadian, Negar; Alados, Concepción; Aramayo, Valeria; Amghar, Fateh; Arredondo, Tulio; Ahumada, Rodrigo; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Helena; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Donoso, David; Dougill, Andrew; Durán, Jorge; Erdenetsetseg, Batdelger; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Frank, Anke; Fraser, Lauchlan; Gherardi, Laureano; Greenville, Aaron; Guerra, Carlos; Gusmán-Montalvan, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Kaseke, Kudzai; Köbel, Melanie; Koopman, Jessica; Leder, Cintia; Linstädter, Anja; Le Roux, Peter; Li, Xinkai; Liancourt, Pierre; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Peter, Guadalupe; Pivari, Marco; Pueyo, Yolanda; Quiroga, R. Emiliano; Rahmanian, Soroor; Reed, Sasha; Rey, Pedro; Richard, Benoit; Rodríguez, Alexandra; Rolo, Víctor; Rubalcaba, Juan; Ruppert, Jan; Salah, Ayman; Schuchardt, Max; Spann, Sedona; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valkó, Orsolya; van den Brink, Liesbeth; Ayuso, Sergio Velasco; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zhang, Yuanming; Zhou, Xiaobing; Singh, Brajesh; Gross, Nicolas;pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 177 citations 177 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 267visibility views 267 download downloads 547 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Elise, Verhoeven; Glenda M, Wardle; Guy W, Roth; Aaron C, Greenville;pmid: 35868391
Global climate change has altered precipitation patterns and disrupted the characteristics of drought and rainfall events. Climate projections confirm that more frequent, intense, and extreme droughts and rainfall events will continue. However, knowledge around how drought and wet events move dynamically through space and time is limited, especially in the southern hemisphere. Australia is the driest inhabited continent, renowned as the land of droughts and flooding rains, but recent climate-driven changes to the severity of wildfires and floods have garnered global attention. Here we used S-TRACK, a novel method for spatial drought tracking, to build pathways for past drought and wet events in Australia to examine their spatiotemporal dynamics. Characteristics such as duration, severity, and intensity were obtained from these pathways, and modified Mann-Kendall tests and Sen's slope were used to detect significant trends in characteristics over time. Drought conditions in southern Australia have intensified, particularly in the southwest of Australia and Tasmania, while the north of the country is experiencing longer, more severe, and more intense wet conditions. We also found that the location of drought and wet hotspots has clearly shifted in response to precipitation changes since the 1970's. Finally, pathways for the most extreme events show peak severity is reached in the middle to late stages of pathways, and that the largest drought and wet areas of a pathway have moved further west in recent times. The findings in this study provide the necessary knowledge to improve preparedness for extreme precipitation events as they become more common and to inform predictions for agricultural output or the extent of other climate events such as wildfires and flooding.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.157480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.157480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Frontiers Media SA Authors: van Etten, Eddie J. B.; Brooks, Matthew L.; Greenville, Aaron C.; Wardle, Glenda M.;Although not commonly associated with fire, many desert ecosystems across the globe do occasionally burn, and there is evidence that fire incidences are increasing, leading to altered fire regimes in this biome. The increased prevalence of megafires (wildfires > 10,000 ha in size and typically damaging) in most global biomes is linked to climate change, although those occurring in deserts have received far less attention, from both a research and policy perspective, than that of forested ecosystems (Linley et al., 2022). Understanding the drivers of desert fires, from climate to landscape patterns of hydrology and soil, and how these may be changing in the face of anthropogenic pressures, such as invasive species, livestock grazing, and global climate change, is imperative. This Research Topic has published nine papers addressing these drivers, how they have changed, and their impacts on desert biodiversity.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.968031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.968031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Finland, Netherlands, France, Argentina, Portugal, France, Portugal, Argentina, United Kingdom, United Kingdom, France, United StatesPublisher:Springer Science and Business Media LLC Funded by:EC | BIOSTASES, FCT | LA 1, EC | GLOBEPURE +1 projectsEC| BIOSTASES ,FCT| LA 1 ,EC| GLOBEPURE ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersElizabeth T. Borer; Andy Hector; Pablo Luis Peri; Peter B. Adler; Risto Virtanen; Anita C. Risch; Melinda D. Smith; Miguel N. Bugalho; Amandine Hansar; Shaopeng Wang; Nico Eisenhauer; Joslin L. Moore; Laura E. Dee; Edwin Pos; Jarrett E. K. Byrnes; Mahesh Sankaran; Mahesh Sankaran; Philip A. Fay; Peter A. Wilfahrt; Jonathan D. Bakker; Oliver Carroll; Forest Isbell; Pedro M. Tognetti; Carlos Alberto Arnillas; Martin Schütz; Mick Crawley; Carly J. Stevens; Anu Eskelinen; Anu Eskelinen; Johannes M. H. Knops; Yann Hautier; Sally A. Power; Maria C. Caldeira; Benjamin Gilbert; John W. Morgan; Jodi N. Price; Sally E. Koerner; Scott L. Collins; Kevin R. Wilcox; Peter B. Reich; Jonathan S. Lefcheck; Marc W. Cadotte; Pengfei Zhang; Christiane Roscher; Michel Loreau; Glenda M. Wardle; Lars A. Brudvig; Kimberly J. Komatsu; Akira Mori; Andrew S. MacDougall; Eric W. Seabloom; Pedro Daleo; Rebecca L. McCulley; Juan Alberti;doi: 10.1038/s41467-020-19252-4 , 10.60692/ek9fr-2vy51 , 10.26181/5fa88c8b515f5 , 10.60692/75wsa-89s88
pmid: 33097736
pmc: PMC7585434
handle: 20.500.12123/8669 , 1959.7/uws:62577
doi: 10.1038/s41467-020-19252-4 , 10.60692/ek9fr-2vy51 , 10.26181/5fa88c8b515f5 , 10.60692/75wsa-89s88
pmid: 33097736
pmc: PMC7585434
handle: 20.500.12123/8669 , 1959.7/uws:62577
AbstractEutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.
Hyper Article en Lig... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03169697Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2020Data sources: Universidade de Lisboa: Repositório.ULUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaUniversity of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19252-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 13 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03169697Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2020Data sources: Universidade de Lisboa: Repositório.ULUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaUniversity of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19252-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Netherlands, Spain, SpainPublisher:Springer Science and Business Media LLC V. F. Bondaruk; C. Xu; P. Wilfahrt; L. Yahdjian; Q. Yu; E. T. Borer; A. Jentsch; E. W. Seabloom; M. D. Smith; J. Alberti; G. R. Oñatibia; H. Dieguez; M. Carbognani; A. Kübert; S. A. Power; N. Eisenhauer; F. Isbell; H. Auge; M. H. Chandregowda; A. C. Churchill; P. Daleo; T. Forte; A. C. Greenville; S. E. Koerner; T. Ohlert; P. Peri; A. Petraglia; D. Salesa; M. Tedder; A. Valdecantos; E. Verhoeven; G. M. Wardle; C. Werner; G. R. Wheeler; H. An; L. Biancari; H. J. Diao; J. Gutknecht; L. B. Han; Y. G. Ke; J. L. Liu; Y. Maziko; D. S. Tian; D. Tissue; S. Wanke; C. Z. Wei; K. Wilkins; H. H. Wu; A. L. Young; F. W. Zhang; B. Zhang; J. T. Zhu; N. Zong; X. A. Zuo; Y. Hautier;pmid: 40389741
Plant biomass tends to increase under nutrient addition and decrease under drought. Biotic and abiotic factors influence responses to both, making the combined impact of nutrient addition and drought difficult to predict. Using a globally distributed network of manipulative field experiments, we assessed grassland aboveground biomass response to both drought and increased nutrient availability at 26 sites across nine countries. Overall, drought reduced biomass by 19% and nutrient addition increased it by 24%, resulting in no net impact under combined drought and nutrient addition. Among the plant functional groups, only graminoids responded positively to nutrients during drought. However, these general responses depended on local conditions, especially aridity. Nutrient effects were stronger in arid grasslands and weaker in humid regions and nitrogen-rich soils, although nutrient addition alleviated drought effects the most in subhumid sites. Biomass responses were weaker with higher precipitation variability. Biomass increased more with increased nutrient availability and declined more with drought at high-diversity sites than at low-diversity sites. Our findings highlight the importance of local abiotic and biotic conditions in predicting grassland responses to anthropogenic nutrient and climate changes.
Repositorio Instituc... arrow_drop_down Repositorio Institucional de la Universidad de AlicanteArticle . 2025Data sources: Repositorio Institucional de la Universidad de AlicanteNature Ecology & EvolutionArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-025-02705-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Repositorio Instituc... arrow_drop_down Repositorio Institucional de la Universidad de AlicanteArticle . 2025Data sources: Repositorio Institucional de la Universidad de AlicanteNature Ecology & EvolutionArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-025-02705-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, Australia, United StatesPublisher:Wiley Publicly fundedBen Raymond; Ben Raymond; Katinka X. Ruthrof; Suzanne M. Prober; John van den Hoff; Euan G. Ritchie; Kristen J. Williams; Shaun T. Brooks; Rowan Trebilco; Rowan Trebilco; Kate J. Helmstedt; Delphi F. L. Ward; Andrew J. Constable; Samantha A. Setterfield; Michael H. Depledge; Sharon A. Robinson; Norman C. Duke; Carla M. Sgrò; Christopher M. Baker; Emily Nicholson; Melodie A. McGeoch; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Justine D. Shaw; Barbara C. Wienecke; David B. Lindenmayer; Glenda M. Wardle; Andrés Holz; David M. J. S. Bowman; Tracy D. Ainsworth; Jonathan S. Stark; Lucie M. Bland; Toby Travers; Craig R. Johnson; Dana M. Bergstrom; Dana M. Bergstrom; Rachel Morgain; Josep G. Canadell; Phillip J. Zylstra; Phillip J. Zylstra; Catherine R. Dickson; Lesley Hughes; Katherine A. Dafforn;AbstractGlobally, collapse of ecosystems—potentially irreversible change to ecosystem structure, composition and function—imperils biodiversity, human health and well‐being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2, from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic ‘presses’ and/or acute ‘pulses’, drive ecosystem collapse. Ecosystem responses to 5–17 pressures were categorised as four collapse profiles—abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three‐step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.
Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 172 citations 172 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 Spain, Canada, Portugal, Spain, France, Canada, Spain, Portugal, SpainPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, EC | BIODESERT +3 projectsARC| Discovery Projects - Grant ID: DP210102593 ,EC| DRYFUN ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,FCT| CEECIND/02453/2018/CP1534/CT0001 ,DFG| EarthShape: Earth Surface Shaping by BiotaGross, Nicolas; Maestre, Fernando; Liancourt, Pierre; Berdugo, Miguel; Martin, Raphaël; Gozalo, Beatriz; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Maire, Vincent; Saiz, Hugo; Soliveres, Santiago; Valencia, Enrique; Eldridge, David; Guirado, Emilio; Jabot, Franck; Asensio, Sergio; Gaitán, Juan; García-Gómez, Miguel; Martínez, Paloma; Martínez-Valderrama, Jaime; Mendoza, Betty; Moreno-Jiménez, Eduardo; Pescador, David; Plaza, César; Pijuan, Ivan Santaolaria; Abedi, Mehdi; Ahumada, Rodrigo; Amghar, Fateh; Arroyo, Antonio; Bahalkeh, Khadijeh; Bailey, Lydia; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; van den Brink, Liesbeth; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea del P.; Castro, Helena; Castro, Patricio; Chibani, Roukaya; Conceição, Abel Augusto; Darrouzet-Nardi, Anthony; Davila, Yvonne; Deák, Balázs; Donoso, David; Durán, Jorge; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Franzese, Jorgelina; Fraser, Lauchlan; Gonzalez, Sofía; Gusman-Montalvan, Elizabeth; Hernández-Hernández, Rosa Mary; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Jadan, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Le Roux, Peter; Linstädter, Anja; Louw, Michelle; Mabaso, Mancha; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Margerie, Pierre; Hughes, Frederic Mendes; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gaston; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Ramírez-Iglesias, Elizabeth; Reed, Sasha; Rey, Pedro; Reyes Gómez, Víctor; Rodríguez, Alexandra; Rolo, Victor; Rubalcaba, Juan; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Phokgedi Julius; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Undrakhbold, Sainbileg; Val, James; Valkó, Orsolya; Velbert, Frederike; Wamiti, Wanyoike; Wang, Lixin; Wang, Deli; Wardle, Glenda; Wolff, Peter; Yahdjian, Laura; Yari, Reza; Zaady, Eli; Zeberio, Juan Manuel; Zhang, Yuanling; Zhou, Xiaobing; Le Bagousse-Pinguet, Yoann;Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 133 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United States, Belgium, France, United States, Belgium, Australia, France, FrancePublisher:Wiley Publicly fundedFunded by:NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi..., FCT | LA 1 +2 projectsNSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,FCT| LA 1 ,EC| IMBALANCE-P ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and modelsKevin Van Sundert; Carly J. Stevens; Johannes M. H. Knops; Martin Schütz; Risto Virtanen; Lori A. Biederman; Xavier Raynaud; Philip A. Fay; Anne Ebeling; Ian Donohue; Amandine Hansart; Andrew S. MacDougall; Christiane Roscher; Eric W. Seabloom; Harry Olde Venterink; Anita C. Risch; Elizabeth T. Borer; Glenda M. Wardle; Timothy Ohlert; Dajana Radujković; Jane A. Catford; Elizabeth H. Boughton; Maria L. Silveira; Peter D. Wragg; Michael Bahn; Sara Vicca; Erik Verbruggen; Anu Eskelinen; Anu Eskelinen; Matteo Campioli;doi: 10.1111/ele.13894
pmid: 34617374
AbstractFertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory‐driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co‐limitation by NP and micronutrients.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalKing's College, London: Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institutional Repository Universiteit AntwerpenArticle . 2021Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalKing's College, London: Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Norway, Czech Republic, Australia, Germany, Norway, Czech Republic, Norway, Italy, Canada, SpainPublisher:Wiley Publicly fundedFunded by:SFI | POPSTAR-SFI: Plant popula..., NSERCSFI| POPSTAR-SFI: Plant population strategy and response to the environment ,NSERCPil U. Rasmussen; Richard P. Duncan; Judit Bódis; Simone Ravetto Enri; Benedicte Bachelot; Anna Mária Csergő; Anna Mária Csergő; Jesús Villellas; Jesús Villellas; Alain Finn; R. Groenteman; Sergi Munné-Bosch; John M. Dwyer; John M. Dwyer; Lauchlan H. Fraser; Gregory E. Vose; Anna Roeder; Elizabeth E. Crone; Matthew Coghill; Annabel L. Smith; Annabel L. Smith; Ruth Kelly; Satu Ramula; Olav Skarpaas; Ayco J. M. Tack; Christina M. Caruso; Astrid Wingler; Bret D. Elderd; Anna-Liisa Laine; Anna-Liisa Laine; Dylan Z. Childs; Aveliina Helm; Christiane Roscher; Paloma Nuche; Aldo Compagnoni; Anna Bucharova; Anna Bucharova; Emily Griffoul; Peter A. Vesk; Zuzana Münzbergová; Zuzana Münzbergová; Cheryl B. Schultz; Adrian Oprea; Meelis Pärtel; Siri Lie Olsen; Aryana Ferguson; Deborah A. Roach; Joachim Töpper; Michele Lonati; Roberto Salguero-Gómez; Roberto Salguero-Gómez; Roberto Salguero-Gómez; Liv Norunn Hamre; William K. Petry; Yvonne M. Buckley; Yvonne M. Buckley; María B. García; Johan Ehrlén; Glenda M. Wardle; Lauri Laanisto; Elizabeth M. Wandrag; Elizabeth M. Wandrag; Jane A. Catford; Jane A. Catford;doi: 10.1111/ele.13858
pmid: 34355467
handle: 10852/88810 , 11250/2789028 , 20.500.14352/4825 , 10214/28923 , 2318/1800379 , 11343/289531 , 10900/131717
doi: 10.1111/ele.13858
pmid: 34355467
handle: 10852/88810 , 11250/2789028 , 20.500.14352/4825 , 10214/28923 , 2318/1800379 , 11343/289531 , 10900/131717
AbstractGenetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short‐lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short‐term perturbations. Combining a multi‐treatment greenhouse experiment with observational field data throughout the range of a widespread short‐lived herb,Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait–environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field‐observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.
CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10852/88810Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/11343/289531Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesDSpace at the University of Guelph (Atrium)Article . 2021License: CC BY NCData sources: DSpace at the University of Guelph (Atrium)Eberhard Karls University Tübingen: Publication SystemArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10852/88810Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/11343/289531Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesDSpace at the University of Guelph (Atrium)Article . 2021License: CC BY NCData sources: DSpace at the University of Guelph (Atrium)Eberhard Karls University Tübingen: Publication SystemArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | NEON RCN: The Ecological ...NSF| NEON RCN: The Ecological Forecasting Initiative RCN: Using NEON-enabled near-term forecasting to synthesize our understanding of predictability across ecological systems and scalesMichael Dietze; Ethan P. White; Antoinette Abeyta; Carl Boettiger; Nievita Bueno Watts; Cayelan C. Carey; Rebecca Chaplin-Kramer; Ryan E. Emanuel; S. K. Morgan Ernest; Renato J. Figueiredo; Michael D. Gerst; Leah R. Johnson; Melissa A. Kenney; Jason S. McLachlan; Ioannis Ch. Paschalidis; Jody A. Peters; Christine R. Rollinson; Juniper Simonis; Kira Sullivan-Wiley; R. Quinn Thomas; Glenda M. Wardle; Alyssa M. Willson; Jacob Zwart;handle: 10919/122612
A substantial increase in predictive capacity is needed to anticipate and mitigate the widespread change in ecosystems and their services in the face of climate and biodiversity crises. In this era of accelerating change, we cannot rely on historical patterns or focus primarily on long-term projections that extend decades into the future. In this Perspective, we discuss the potential of near-term (daily to decadal) iterative ecological forecasting to improve decision-making on actionable time frames. We summarize the current status of ecological forecasting and focus on how to scale up, build on lessons from weather forecasting, and take advantage of recent technological advances. We also highlight the need to focus on equity, workforce development, and broad cross-disciplinary and non-academic partnerships. This work was supported by the NSF Research Coordination Network under grant number 1926388 and an Alfred P. Sloan Foundation grant. Published version
VTechWorks arrow_drop_down Nature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02182-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert VTechWorks arrow_drop_down Nature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02182-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, France, Spain, Portugal, Germany, South Africa, United States, United States, Spain, Spain, Portugal, Spain, GermanyPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | eLTER PLUS, EC | BIODESERT, EC | AGREENSKILLSPLUS +2 projectsEC| eLTER PLUS ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,EC| DRYFUN ,EC| TUdiAuthors: Maestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; +127 AuthorsMaestre, Fernando; Eldridge, David; Le Bagousse-Pinguet, Yoann; Delgado-Baquerizo, Manuel; Saiz, Hugo; Berdugo, Miguel; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Gaitán, Juan; Asensio, Sergio; Mendoza, Betty; Plaza, César; Díaz-Martínez, Paloma; Rey, Ana; Hu, Hang-Wei; He, Ji-Zheng; Wang, Jun-Tao; Lehmann, Anika; Rillig, Matthias; Cesarz, Simone; Eisenhauer, Nico; Martínez-Valderrama, Jaime; Moreno-Jiménez, Eduardo; Sala, Osvaldo; Abedi, Mehdi; Ahmadian, Negar; Alados, Concepción; Aramayo, Valeria; Amghar, Fateh; Arredondo, Tulio; Ahumada, Rodrigo; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Helena; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Donoso, David; Dougill, Andrew; Durán, Jorge; Erdenetsetseg, Batdelger; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Frank, Anke; Fraser, Lauchlan; Gherardi, Laureano; Greenville, Aaron; Guerra, Carlos; Gusmán-Montalvan, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Kaseke, Kudzai; Köbel, Melanie; Koopman, Jessica; Leder, Cintia; Linstädter, Anja; Le Roux, Peter; Li, Xinkai; Liancourt, Pierre; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Peter, Guadalupe; Pivari, Marco; Pueyo, Yolanda; Quiroga, R. Emiliano; Rahmanian, Soroor; Reed, Sasha; Rey, Pedro; Richard, Benoit; Rodríguez, Alexandra; Rolo, Víctor; Rubalcaba, Juan; Ruppert, Jan; Salah, Ayman; Schuchardt, Max; Spann, Sedona; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valkó, Orsolya; van den Brink, Liesbeth; Ayuso, Sergio Velasco; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zhang, Yuanming; Zhou, Xiaobing; Singh, Brajesh; Gross, Nicolas;pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
pmid: 36423285
handle: 10486/716905 , 10261/284471 , 1805/37340 , 1959.7/uws:73863 , 2263/91312 , 10900/141400
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 177 citations 177 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 267visibility views 267 download downloads 547 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1126/science.abq4062Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2022License: CC BYData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicantePublikationsserver der Universität PotsdamArticle . 2022Data sources: Publikationsserver der Universität PotsdamDigital Repository of University of Zaragoza (ZAGUAN)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abq4062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Elise, Verhoeven; Glenda M, Wardle; Guy W, Roth; Aaron C, Greenville;pmid: 35868391
Global climate change has altered precipitation patterns and disrupted the characteristics of drought and rainfall events. Climate projections confirm that more frequent, intense, and extreme droughts and rainfall events will continue. However, knowledge around how drought and wet events move dynamically through space and time is limited, especially in the southern hemisphere. Australia is the driest inhabited continent, renowned as the land of droughts and flooding rains, but recent climate-driven changes to the severity of wildfires and floods have garnered global attention. Here we used S-TRACK, a novel method for spatial drought tracking, to build pathways for past drought and wet events in Australia to examine their spatiotemporal dynamics. Characteristics such as duration, severity, and intensity were obtained from these pathways, and modified Mann-Kendall tests and Sen's slope were used to detect significant trends in characteristics over time. Drought conditions in southern Australia have intensified, particularly in the southwest of Australia and Tasmania, while the north of the country is experiencing longer, more severe, and more intense wet conditions. We also found that the location of drought and wet hotspots has clearly shifted in response to precipitation changes since the 1970's. Finally, pathways for the most extreme events show peak severity is reached in the middle to late stages of pathways, and that the largest drought and wet areas of a pathway have moved further west in recent times. The findings in this study provide the necessary knowledge to improve preparedness for extreme precipitation events as they become more common and to inform predictions for agricultural output or the extent of other climate events such as wildfires and flooding.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.157480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.157480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Frontiers Media SA Authors: van Etten, Eddie J. B.; Brooks, Matthew L.; Greenville, Aaron C.; Wardle, Glenda M.;Although not commonly associated with fire, many desert ecosystems across the globe do occasionally burn, and there is evidence that fire incidences are increasing, leading to altered fire regimes in this biome. The increased prevalence of megafires (wildfires > 10,000 ha in size and typically damaging) in most global biomes is linked to climate change, although those occurring in deserts have received far less attention, from both a research and policy perspective, than that of forested ecosystems (Linley et al., 2022). Understanding the drivers of desert fires, from climate to landscape patterns of hydrology and soil, and how these may be changing in the face of anthropogenic pressures, such as invasive species, livestock grazing, and global climate change, is imperative. This Research Topic has published nine papers addressing these drivers, how they have changed, and their impacts on desert biodiversity.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.968031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.968031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Finland, Netherlands, France, Argentina, Portugal, France, Portugal, Argentina, United Kingdom, United Kingdom, France, United StatesPublisher:Springer Science and Business Media LLC Funded by:EC | BIOSTASES, FCT | LA 1, EC | GLOBEPURE +1 projectsEC| BIOSTASES ,FCT| LA 1 ,EC| GLOBEPURE ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersElizabeth T. Borer; Andy Hector; Pablo Luis Peri; Peter B. Adler; Risto Virtanen; Anita C. Risch; Melinda D. Smith; Miguel N. Bugalho; Amandine Hansar; Shaopeng Wang; Nico Eisenhauer; Joslin L. Moore; Laura E. Dee; Edwin Pos; Jarrett E. K. Byrnes; Mahesh Sankaran; Mahesh Sankaran; Philip A. Fay; Peter A. Wilfahrt; Jonathan D. Bakker; Oliver Carroll; Forest Isbell; Pedro M. Tognetti; Carlos Alberto Arnillas; Martin Schütz; Mick Crawley; Carly J. Stevens; Anu Eskelinen; Anu Eskelinen; Johannes M. H. Knops; Yann Hautier; Sally A. Power; Maria C. Caldeira; Benjamin Gilbert; John W. Morgan; Jodi N. Price; Sally E. Koerner; Scott L. Collins; Kevin R. Wilcox; Peter B. Reich; Jonathan S. Lefcheck; Marc W. Cadotte; Pengfei Zhang; Christiane Roscher; Michel Loreau; Glenda M. Wardle; Lars A. Brudvig; Kimberly J. Komatsu; Akira Mori; Andrew S. MacDougall; Eric W. Seabloom; Pedro Daleo; Rebecca L. McCulley; Juan Alberti;doi: 10.1038/s41467-020-19252-4 , 10.60692/ek9fr-2vy51 , 10.26181/5fa88c8b515f5 , 10.60692/75wsa-89s88
pmid: 33097736
pmc: PMC7585434
handle: 20.500.12123/8669 , 1959.7/uws:62577
doi: 10.1038/s41467-020-19252-4 , 10.60692/ek9fr-2vy51 , 10.26181/5fa88c8b515f5 , 10.60692/75wsa-89s88
pmid: 33097736
pmc: PMC7585434
handle: 20.500.12123/8669 , 1959.7/uws:62577
AbstractEutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.
Hyper Article en Lig... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03169697Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2020Data sources: Universidade de Lisboa: Repositório.ULUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaUniversity of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19252-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 13 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03169697Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2020Data sources: Universidade de Lisboa: Repositório.ULUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaUniversity of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19252-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Netherlands, Spain, SpainPublisher:Springer Science and Business Media LLC V. F. Bondaruk; C. Xu; P. Wilfahrt; L. Yahdjian; Q. Yu; E. T. Borer; A. Jentsch; E. W. Seabloom; M. D. Smith; J. Alberti; G. R. Oñatibia; H. Dieguez; M. Carbognani; A. Kübert; S. A. Power; N. Eisenhauer; F. Isbell; H. Auge; M. H. Chandregowda; A. C. Churchill; P. Daleo; T. Forte; A. C. Greenville; S. E. Koerner; T. Ohlert; P. Peri; A. Petraglia; D. Salesa; M. Tedder; A. Valdecantos; E. Verhoeven; G. M. Wardle; C. Werner; G. R. Wheeler; H. An; L. Biancari; H. J. Diao; J. Gutknecht; L. B. Han; Y. G. Ke; J. L. Liu; Y. Maziko; D. S. Tian; D. Tissue; S. Wanke; C. Z. Wei; K. Wilkins; H. H. Wu; A. L. Young; F. W. Zhang; B. Zhang; J. T. Zhu; N. Zong; X. A. Zuo; Y. Hautier;pmid: 40389741
Plant biomass tends to increase under nutrient addition and decrease under drought. Biotic and abiotic factors influence responses to both, making the combined impact of nutrient addition and drought difficult to predict. Using a globally distributed network of manipulative field experiments, we assessed grassland aboveground biomass response to both drought and increased nutrient availability at 26 sites across nine countries. Overall, drought reduced biomass by 19% and nutrient addition increased it by 24%, resulting in no net impact under combined drought and nutrient addition. Among the plant functional groups, only graminoids responded positively to nutrients during drought. However, these general responses depended on local conditions, especially aridity. Nutrient effects were stronger in arid grasslands and weaker in humid regions and nitrogen-rich soils, although nutrient addition alleviated drought effects the most in subhumid sites. Biomass responses were weaker with higher precipitation variability. Biomass increased more with increased nutrient availability and declined more with drought at high-diversity sites than at low-diversity sites. Our findings highlight the importance of local abiotic and biotic conditions in predicting grassland responses to anthropogenic nutrient and climate changes.
Repositorio Instituc... arrow_drop_down Repositorio Institucional de la Universidad de AlicanteArticle . 2025Data sources: Repositorio Institucional de la Universidad de AlicanteNature Ecology & EvolutionArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-025-02705-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Repositorio Instituc... arrow_drop_down Repositorio Institucional de la Universidad de AlicanteArticle . 2025Data sources: Repositorio Institucional de la Universidad de AlicanteNature Ecology & EvolutionArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-025-02705-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United States, Australia, United StatesPublisher:Wiley Publicly fundedBen Raymond; Ben Raymond; Katinka X. Ruthrof; Suzanne M. Prober; John van den Hoff; Euan G. Ritchie; Kristen J. Williams; Shaun T. Brooks; Rowan Trebilco; Rowan Trebilco; Kate J. Helmstedt; Delphi F. L. Ward; Andrew J. Constable; Samantha A. Setterfield; Michael H. Depledge; Sharon A. Robinson; Norman C. Duke; Carla M. Sgrò; Christopher M. Baker; Emily Nicholson; Melodie A. McGeoch; Jessica Melbourne-Thomas; Jessica Melbourne-Thomas; Justine D. Shaw; Barbara C. Wienecke; David B. Lindenmayer; Glenda M. Wardle; Andrés Holz; David M. J. S. Bowman; Tracy D. Ainsworth; Jonathan S. Stark; Lucie M. Bland; Toby Travers; Craig R. Johnson; Dana M. Bergstrom; Dana M. Bergstrom; Rachel Morgain; Josep G. Canadell; Phillip J. Zylstra; Phillip J. Zylstra; Catherine R. Dickson; Lesley Hughes; Katherine A. Dafforn;AbstractGlobally, collapse of ecosystems—potentially irreversible change to ecosystem structure, composition and function—imperils biodiversity, human health and well‐being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2, from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic ‘presses’ and/or acute ‘pulses’, drive ecosystem collapse. Ecosystem responses to 5–17 pressures were categorised as four collapse profiles—abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three‐step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.
Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 172 citations 172 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Portland State University: PDXScholarArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu