- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Czech Academy of Agricultural Sciences Pavel Krám; Aleš Farda; Tomáš Chuman; Evzen Stuchlik; Jakub Hruška; Anna Lamačová; Daniela Fottova;The aims of the present study were (i) to evaluate trends in runoff from small forested catchments of the GEOMON (GEOchemical MONitoring) network during the period 1994-2011, and (ii) to estimate the impact of anticipated climate change projected by ALADIN-Climate/CZ regional climate model coupled to ARPEGE-Climate global circulation model and forced with IPCC SRES A1B emission scenario on flow patterns in the periods 2021-2050 and 2071-2100. There were no general patterns found indicating either significant increases or decreases in runoff on either seasonal or annual levels across the investigated catchments within 1994-2011. Annual runoff is projected to decrease by 15% (2021-2050) and 35% (2071-2100) with a significant decrease in summer months and a slight increase in winter months as a result of expected climate change as simulated by the selected climate model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17221/110/2013-swr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17221/110/2013-swr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Czech Academy of Agricultural Sciences Pavel Krám; Aleš Farda; Tomáš Chuman; Evzen Stuchlik; Jakub Hruška; Anna Lamačová; Daniela Fottova;The aims of the present study were (i) to evaluate trends in runoff from small forested catchments of the GEOMON (GEOchemical MONitoring) network during the period 1994-2011, and (ii) to estimate the impact of anticipated climate change projected by ALADIN-Climate/CZ regional climate model coupled to ARPEGE-Climate global circulation model and forced with IPCC SRES A1B emission scenario on flow patterns in the periods 2021-2050 and 2071-2100. There were no general patterns found indicating either significant increases or decreases in runoff on either seasonal or annual levels across the investigated catchments within 1994-2011. Annual runoff is projected to decrease by 15% (2021-2050) and 35% (2071-2100) with a significant decrease in summer months and a slight increase in winter months as a result of expected climate change as simulated by the selected climate model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17221/110/2013-swr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17221/110/2013-swr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Switzerland, SpainPublisher:Springer Science and Business Media LLC Funded by:FWF | 14500 yr History of Chang..., NSERC, EC | RECONMET +1 projectsFWF| 14500 yr History of Changes in Sediment Geochemistry - The Impact of Climate and Human Activities on Trace Elements and SR Isotopes in Lake Sediments ,NSERC ,EC| RECONMET ,FWF| Holocene climate change reflected in alpine lake sedimentsCatalan, Jordi; Pla-Rabés, Sergi; Wolfe, Alexander P.; Smol, John P.; Ruehland, Kathleen M.; Anderson, N. John; Kopáček, Jiři; Stuchlik, Evzen; Schmidt, Roland; Koinig, Karin A.; Camarero, Lluis; Flower, Roger J.; Heiri, Oliver; Kamenik, Christian; Korhola, Atte; Leavitt, Peter R.; Psenner, Roland; Renberg, Ingemar;handle: 10261/74378
23 páginas, 7 figuras, 1 tabla. Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship. The authors acknowledge project support from GRACCIE (CSD2007-00067), NITROPIR (CGL2010- 19373), OCUPA (088/2009), the European Research Council (Starting Grant Project, 239858), the Natural Sciences and Engineering Research Council of Canada, the US Department of the Interior, the Commission for Scientific Research in Greenland, the Austrian Science Foundation (FWF R 29N10, FWF J 1963-Geo), the Alpine Research Programme of the Austrian Academy of Sciences (project DETECTIVE), and the Czech Science Foundation (project GACR 526/09/0567). Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of PaleolimnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-013-9681-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 53visibility views 53 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of PaleolimnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-013-9681-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Switzerland, SpainPublisher:Springer Science and Business Media LLC Funded by:FWF | 14500 yr History of Chang..., NSERC, EC | RECONMET +1 projectsFWF| 14500 yr History of Changes in Sediment Geochemistry - The Impact of Climate and Human Activities on Trace Elements and SR Isotopes in Lake Sediments ,NSERC ,EC| RECONMET ,FWF| Holocene climate change reflected in alpine lake sedimentsCatalan, Jordi; Pla-Rabés, Sergi; Wolfe, Alexander P.; Smol, John P.; Ruehland, Kathleen M.; Anderson, N. John; Kopáček, Jiři; Stuchlik, Evzen; Schmidt, Roland; Koinig, Karin A.; Camarero, Lluis; Flower, Roger J.; Heiri, Oliver; Kamenik, Christian; Korhola, Atte; Leavitt, Peter R.; Psenner, Roland; Renberg, Ingemar;handle: 10261/74378
23 páginas, 7 figuras, 1 tabla. Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship. The authors acknowledge project support from GRACCIE (CSD2007-00067), NITROPIR (CGL2010- 19373), OCUPA (088/2009), the European Research Council (Starting Grant Project, 239858), the Natural Sciences and Engineering Research Council of Canada, the US Department of the Interior, the Commission for Scientific Research in Greenland, the Austrian Science Foundation (FWF R 29N10, FWF J 1963-Geo), the Alpine Research Programme of the Austrian Academy of Sciences (project DETECTIVE), and the Czech Science Foundation (project GACR 526/09/0567). Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of PaleolimnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-013-9681-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 53visibility views 53 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of PaleolimnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-013-9681-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:American Chemical Society (ACS) Jiří Kopáček; Jiří Kaňa; Svetlana Bičárová; Ivan J. Fernandez; Josef Hejzlar; Marie Kahounová; Stephen A. Norton; Evžen Stuchlík;pmid: 27997122
Climate change can reverse trends of decreasing calcium and magnesium [Ca + Mg] leaching to surface waters in granitic alpine regions recovering from acidification. Despite decreasing concentrations of strong acid anions (-1.4 μeq L-1 yr-1) during 2004-2016 in nonacidic alpine lakes in the Tatra Mountains (Central Europe), the average [Ca + Mg] concentrations increased (2.5 μeq L-1 yr-1), together with elevated terrestrial export of bicarbonate (HCO3-; 3.6 μeq L-1 yr-1). The percent increase in [Ca + Mg] concentrations in nonacidic lakes (0.3-3.2% yr-1) was significantly and positively correlated with scree proportion in the catchment area and negatively correlated with the extent of soil cover. Leaching experiments with freshly crushed granodiorite, the dominant bedrock, showed that accessory calcite and (to a lesser extent) apatite were important sources of Ca. We hypothesize that elevated terrestrial export of [Ca + Mg] and HCO3- resulted from increased weathering caused by accelerated physical erosion of rocks due to elevated climate-related mechanical forces (an increasing frequency of days with high precipitation amounts and air temperatures fluctuating around 0 °C) during the last 2-3 decades. These climatic effects on water chemistry are especially strong in catchments where fragmented rocks are more exposed to weathering, and their position is less stable than in soil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b03575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b03575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:American Chemical Society (ACS) Jiří Kopáček; Jiří Kaňa; Svetlana Bičárová; Ivan J. Fernandez; Josef Hejzlar; Marie Kahounová; Stephen A. Norton; Evžen Stuchlík;pmid: 27997122
Climate change can reverse trends of decreasing calcium and magnesium [Ca + Mg] leaching to surface waters in granitic alpine regions recovering from acidification. Despite decreasing concentrations of strong acid anions (-1.4 μeq L-1 yr-1) during 2004-2016 in nonacidic alpine lakes in the Tatra Mountains (Central Europe), the average [Ca + Mg] concentrations increased (2.5 μeq L-1 yr-1), together with elevated terrestrial export of bicarbonate (HCO3-; 3.6 μeq L-1 yr-1). The percent increase in [Ca + Mg] concentrations in nonacidic lakes (0.3-3.2% yr-1) was significantly and positively correlated with scree proportion in the catchment area and negatively correlated with the extent of soil cover. Leaching experiments with freshly crushed granodiorite, the dominant bedrock, showed that accessory calcite and (to a lesser extent) apatite were important sources of Ca. We hypothesize that elevated terrestrial export of [Ca + Mg] and HCO3- resulted from increased weathering caused by accelerated physical erosion of rocks due to elevated climate-related mechanical forces (an increasing frequency of days with high precipitation amounts and air temperatures fluctuating around 0 °C) during the last 2-3 decades. These climatic effects on water chemistry are especially strong in catchments where fragmented rocks are more exposed to weathering, and their position is less stable than in soil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b03575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b03575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Josef Křeček; Lada Šedivá; Ladislav Palán; Evžen Stuchlík;doi: 10.3390/w15132458
In headwaters, snowmelt affects the replenishment of water resources as well as the occurrence of natural hazards. The environmental impacts of snowpack were analysed in a small forest catchment (Jizera Mountains, Czech Republic) in the context of forest dynamics, atmospheric deposition, and climate, 1982–2021. Snowmelt dominates in March–May with 41% of the long-term annual water yield; however, there is also seasonal acidification of stream water. Forest clear-cutting together with air pollution control has contributed to a decrease in the acid atmospheric load, but, in the spring, streams’ pH is often below the environmental threshold of 5.3. Snowmelt volumes did not show significant transformation with forest canopy and do not affect summer low flows. Peak flows in the springtime do not exceed summer flash floods (frequencies up to 0.13 against 0.02). Mean annual air temperature is increasing by 0.26 ± 0.08 °C per decade with more intensive warming (0.64 ± 0.1 °C per decade) in the winter season. The seasonal reduction in snowpack duration and maximum snow water equivalent (5.5 ± 1.2 days and 34 ± 8.6 mm per decade) corresponds with the largest drop in snow cover duration reported in zones of seasonal temperatures ranging from −5° to +5 °C.
Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/13/2458/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15132458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/13/2458/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15132458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Josef Křeček; Lada Šedivá; Ladislav Palán; Evžen Stuchlík;doi: 10.3390/w15132458
In headwaters, snowmelt affects the replenishment of water resources as well as the occurrence of natural hazards. The environmental impacts of snowpack were analysed in a small forest catchment (Jizera Mountains, Czech Republic) in the context of forest dynamics, atmospheric deposition, and climate, 1982–2021. Snowmelt dominates in March–May with 41% of the long-term annual water yield; however, there is also seasonal acidification of stream water. Forest clear-cutting together with air pollution control has contributed to a decrease in the acid atmospheric load, but, in the spring, streams’ pH is often below the environmental threshold of 5.3. Snowmelt volumes did not show significant transformation with forest canopy and do not affect summer low flows. Peak flows in the springtime do not exceed summer flash floods (frequencies up to 0.13 against 0.02). Mean annual air temperature is increasing by 0.26 ± 0.08 °C per decade with more intensive warming (0.64 ± 0.1 °C per decade) in the winter season. The seasonal reduction in snowpack duration and maximum snow water equivalent (5.5 ± 1.2 days and 34 ± 8.6 mm per decade) corresponds with the largest drop in snow cover duration reported in zones of seasonal temperatures ranging from −5° to +5 °C.
Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/13/2458/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15132458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/13/2458/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15132458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Josef Křeček; Jana Nováková; Ladislav Palán; Eva Pažourková; Evžen Stuchlík;Forest practices in headwater catchments are related to environmental and social contexts. The aim of this study is to analyse the changing protective functions of forests in the upper plain of the Jizera Mts. (North Bohemia, Czech Republic) since the second half of the 19th century. With time, forests have gradually changed from native stands to spruce plantations (Picea abies), introducing exotic conifers (more resistant to air pollution), and, recently, back to more diverse mixed stands. The priority in protective forest functions there shifted from flood protection to integrated control of water resources (quantity and quality). In the 1980s, forest – water interactions were degraded by consequences of extreme acid atmospheric deposition, forest die-back, and extensive clear-cut. In the Jizerka catchment, first signs of recovery were observed in the early 1990s, but, stream waters there are still affected by prolonged acidification. While reconstruction of stream water chemistry at Jizerka follows the drop of the acid deposition in some 5 years, the revival of stream biota takes 10–15 years. In 2071–2100, the projected climate change shows rising annual air temperatures by 3.0–4.6 °C, decreasing water yield by 65–123 mm, 60% drop in ‘minimum residual discharge’, and 20–30% rise in peak-flows. However, these projected environmental changes cannot substantially decline the high potential in water resource recharge, or, start reverse processes in recent recovery from acidification and radically affect the existence of planned mixed forests in the upper plain of the Jizera Mts.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Josef Křeček; Jana Nováková; Ladislav Palán; Eva Pažourková; Evžen Stuchlík;Forest practices in headwater catchments are related to environmental and social contexts. The aim of this study is to analyse the changing protective functions of forests in the upper plain of the Jizera Mts. (North Bohemia, Czech Republic) since the second half of the 19th century. With time, forests have gradually changed from native stands to spruce plantations (Picea abies), introducing exotic conifers (more resistant to air pollution), and, recently, back to more diverse mixed stands. The priority in protective forest functions there shifted from flood protection to integrated control of water resources (quantity and quality). In the 1980s, forest – water interactions were degraded by consequences of extreme acid atmospheric deposition, forest die-back, and extensive clear-cut. In the Jizerka catchment, first signs of recovery were observed in the early 1990s, but, stream waters there are still affected by prolonged acidification. While reconstruction of stream water chemistry at Jizerka follows the drop of the acid deposition in some 5 years, the revival of stream biota takes 10–15 years. In 2071–2100, the projected climate change shows rising annual air temperatures by 3.0–4.6 °C, decreasing water yield by 65–123 mm, 60% drop in ‘minimum residual discharge’, and 20–30% rise in peak-flows. However, these projected environmental changes cannot substantially decline the high potential in water resource recharge, or, start reverse processes in recent recovery from acidification and radically affect the existence of planned mixed forests in the upper plain of the Jizera Mts.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jiří Kopáček; Jiří Kaňa; Petr Porcal; Evžen Stuchlík;pmid: 34261223
The current recovery of mountain lakes from atmospheric acidification is increasingly affected (both accelerated and/or delayed) by climate change. We evaluated long-term trends in the ionic composition of 30 lakes situated in the alpine zone of the Tatra Mountains, and compared the rates of their recovery with model (MAGIC) simulations done 20 years ago for the 2003-2020 period. The observed recovery was faster than the model forecast, due to greater reductions in acidic deposition than projected. Trends in water composition were further modified by climate change. Rising temperatures increased the length of the growing season and retention of inorganic N and SO42- more in soil-rich compared with soil-poor catchments. In contrast, elevated precipitation and an increase in rainfall intensity reduced water residence time in soils, and consequently reduced N retention, especially in soil-poor catchments. It is likely that increases in rainfall intensity and annual number of days without snow, along with air temperatures fluctuating around the freezing point elevated the physical erosion of rocks, especially in high-elevation, steep, and scree-rich areas where rocks are not thermally insulated and stabilized by soils. Weathering of exposed accessory calcite in the eroded granodiorite bedrock was a source of Ca2+ and HCO3-, while S-bearing minerals likely contributed to lake water SO42- and partly mitigated its deposition-related decrease in scree-rich catchments. The extent of climate effects on changes in the water composition of alpine lakes recovering from acidic deposition thus depended on elevation and cover of soil and scree in catchments. Our results highlight the need for incorporating dominant climate-related process into existing process-based models to increase their reliability in predicting the future development of lake water composition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2021.117522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2021.117522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jiří Kopáček; Jiří Kaňa; Petr Porcal; Evžen Stuchlík;pmid: 34261223
The current recovery of mountain lakes from atmospheric acidification is increasingly affected (both accelerated and/or delayed) by climate change. We evaluated long-term trends in the ionic composition of 30 lakes situated in the alpine zone of the Tatra Mountains, and compared the rates of their recovery with model (MAGIC) simulations done 20 years ago for the 2003-2020 period. The observed recovery was faster than the model forecast, due to greater reductions in acidic deposition than projected. Trends in water composition were further modified by climate change. Rising temperatures increased the length of the growing season and retention of inorganic N and SO42- more in soil-rich compared with soil-poor catchments. In contrast, elevated precipitation and an increase in rainfall intensity reduced water residence time in soils, and consequently reduced N retention, especially in soil-poor catchments. It is likely that increases in rainfall intensity and annual number of days without snow, along with air temperatures fluctuating around the freezing point elevated the physical erosion of rocks, especially in high-elevation, steep, and scree-rich areas where rocks are not thermally insulated and stabilized by soils. Weathering of exposed accessory calcite in the eroded granodiorite bedrock was a source of Ca2+ and HCO3-, while S-bearing minerals likely contributed to lake water SO42- and partly mitigated its deposition-related decrease in scree-rich catchments. The extent of climate effects on changes in the water composition of alpine lakes recovering from acidic deposition thus depended on elevation and cover of soil and scree in catchments. Our results highlight the need for incorporating dominant climate-related process into existing process-based models to increase their reliability in predicting the future development of lake water composition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2021.117522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2021.117522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Kateřina Dočkalová; Evžen Stuchlík; Ladislav Hamerlík; Peter Bitušík; Jan Turek; Marek Svitok; Milan Novikmec; Reinhard Lackner; Martin Dvorak; Jiří Kopáček; Jolana Tátosová; Lluís Camarero; Leopold Füreder; Daniel Vondrák;doi: 10.1093/ee/nvae052
pmid: 38869370
Abstract Chironomids of the genus Diamesa (Meigen, 1835, Diptera: Chironomidae) inhabit cold, oxygen-rich running waters. We have investigated the presence of Diamesa and other freshwater macroinvertebrates at 22 stream sampling sites in 3 European high mountain regions (the Central Pyrenees, the Ötztal Alps, and the Tatra Mountains) to establish suitable temperature conditions for Diamesa dominance. It has been generally accepted that their high abundance was linked to the presence of glaciers; however, we have shown that in the Tatra Mountains, where there are no glaciers, the conditions for the dominance of Diamesa species are created due to permanent snowfields, the geographical orientation of the valley and shading by the surrounding high peaks. The historical connection of Diamesa to glaciers was investigated from the paleolimnological records of subfossil chironomid assemblages from the Bohemian Forest, where glaciers disappeared before or during the Late Glacial period. As expected, water temperature seems to be the main driver of Diamesa distribution, and we determined that the relative abundance of Diamesa species was significantly higher at the sites with a mean July water temperature below 6.5 °C. The Diamesa-dominated stream communities seems to be endangered due to ongoing climate warming and this assumption is supported by our paleolimnological results from the Bohemian Forest lakes, where Diamesa has disappeared due to warming of lake inflows at the beginning of the Holocene. These findings strengthen the former suggestions that some Diamesa species could be used as an indicator for tracking recent environmental changes in vulnerable ecosystems of cold mountain streams.
Environmental Entomo... arrow_drop_down Environmental EntomologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ee/nvae052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Entomo... arrow_drop_down Environmental EntomologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ee/nvae052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Kateřina Dočkalová; Evžen Stuchlík; Ladislav Hamerlík; Peter Bitušík; Jan Turek; Marek Svitok; Milan Novikmec; Reinhard Lackner; Martin Dvorak; Jiří Kopáček; Jolana Tátosová; Lluís Camarero; Leopold Füreder; Daniel Vondrák;doi: 10.1093/ee/nvae052
pmid: 38869370
Abstract Chironomids of the genus Diamesa (Meigen, 1835, Diptera: Chironomidae) inhabit cold, oxygen-rich running waters. We have investigated the presence of Diamesa and other freshwater macroinvertebrates at 22 stream sampling sites in 3 European high mountain regions (the Central Pyrenees, the Ötztal Alps, and the Tatra Mountains) to establish suitable temperature conditions for Diamesa dominance. It has been generally accepted that their high abundance was linked to the presence of glaciers; however, we have shown that in the Tatra Mountains, where there are no glaciers, the conditions for the dominance of Diamesa species are created due to permanent snowfields, the geographical orientation of the valley and shading by the surrounding high peaks. The historical connection of Diamesa to glaciers was investigated from the paleolimnological records of subfossil chironomid assemblages from the Bohemian Forest, where glaciers disappeared before or during the Late Glacial period. As expected, water temperature seems to be the main driver of Diamesa distribution, and we determined that the relative abundance of Diamesa species was significantly higher at the sites with a mean July water temperature below 6.5 °C. The Diamesa-dominated stream communities seems to be endangered due to ongoing climate warming and this assumption is supported by our paleolimnological results from the Bohemian Forest lakes, where Diamesa has disappeared due to warming of lake inflows at the beginning of the Holocene. These findings strengthen the former suggestions that some Diamesa species could be used as an indicator for tracking recent environmental changes in vulnerable ecosystems of cold mountain streams.
Environmental Entomo... arrow_drop_down Environmental EntomologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ee/nvae052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Entomo... arrow_drop_down Environmental EntomologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ee/nvae052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Czech Academy of Agricultural Sciences Pavel Krám; Aleš Farda; Tomáš Chuman; Evzen Stuchlik; Jakub Hruška; Anna Lamačová; Daniela Fottova;The aims of the present study were (i) to evaluate trends in runoff from small forested catchments of the GEOMON (GEOchemical MONitoring) network during the period 1994-2011, and (ii) to estimate the impact of anticipated climate change projected by ALADIN-Climate/CZ regional climate model coupled to ARPEGE-Climate global circulation model and forced with IPCC SRES A1B emission scenario on flow patterns in the periods 2021-2050 and 2071-2100. There were no general patterns found indicating either significant increases or decreases in runoff on either seasonal or annual levels across the investigated catchments within 1994-2011. Annual runoff is projected to decrease by 15% (2021-2050) and 35% (2071-2100) with a significant decrease in summer months and a slight increase in winter months as a result of expected climate change as simulated by the selected climate model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17221/110/2013-swr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17221/110/2013-swr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Czech Academy of Agricultural Sciences Pavel Krám; Aleš Farda; Tomáš Chuman; Evzen Stuchlik; Jakub Hruška; Anna Lamačová; Daniela Fottova;The aims of the present study were (i) to evaluate trends in runoff from small forested catchments of the GEOMON (GEOchemical MONitoring) network during the period 1994-2011, and (ii) to estimate the impact of anticipated climate change projected by ALADIN-Climate/CZ regional climate model coupled to ARPEGE-Climate global circulation model and forced with IPCC SRES A1B emission scenario on flow patterns in the periods 2021-2050 and 2071-2100. There were no general patterns found indicating either significant increases or decreases in runoff on either seasonal or annual levels across the investigated catchments within 1994-2011. Annual runoff is projected to decrease by 15% (2021-2050) and 35% (2071-2100) with a significant decrease in summer months and a slight increase in winter months as a result of expected climate change as simulated by the selected climate model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17221/110/2013-swr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17221/110/2013-swr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Switzerland, SpainPublisher:Springer Science and Business Media LLC Funded by:FWF | 14500 yr History of Chang..., NSERC, EC | RECONMET +1 projectsFWF| 14500 yr History of Changes in Sediment Geochemistry - The Impact of Climate and Human Activities on Trace Elements and SR Isotopes in Lake Sediments ,NSERC ,EC| RECONMET ,FWF| Holocene climate change reflected in alpine lake sedimentsCatalan, Jordi; Pla-Rabés, Sergi; Wolfe, Alexander P.; Smol, John P.; Ruehland, Kathleen M.; Anderson, N. John; Kopáček, Jiři; Stuchlik, Evzen; Schmidt, Roland; Koinig, Karin A.; Camarero, Lluis; Flower, Roger J.; Heiri, Oliver; Kamenik, Christian; Korhola, Atte; Leavitt, Peter R.; Psenner, Roland; Renberg, Ingemar;handle: 10261/74378
23 páginas, 7 figuras, 1 tabla. Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship. The authors acknowledge project support from GRACCIE (CSD2007-00067), NITROPIR (CGL2010- 19373), OCUPA (088/2009), the European Research Council (Starting Grant Project, 239858), the Natural Sciences and Engineering Research Council of Canada, the US Department of the Interior, the Commission for Scientific Research in Greenland, the Austrian Science Foundation (FWF R 29N10, FWF J 1963-Geo), the Alpine Research Programme of the Austrian Academy of Sciences (project DETECTIVE), and the Czech Science Foundation (project GACR 526/09/0567). Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of PaleolimnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-013-9681-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 53visibility views 53 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of PaleolimnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-013-9681-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Switzerland, SpainPublisher:Springer Science and Business Media LLC Funded by:FWF | 14500 yr History of Chang..., NSERC, EC | RECONMET +1 projectsFWF| 14500 yr History of Changes in Sediment Geochemistry - The Impact of Climate and Human Activities on Trace Elements and SR Isotopes in Lake Sediments ,NSERC ,EC| RECONMET ,FWF| Holocene climate change reflected in alpine lake sedimentsCatalan, Jordi; Pla-Rabés, Sergi; Wolfe, Alexander P.; Smol, John P.; Ruehland, Kathleen M.; Anderson, N. John; Kopáček, Jiři; Stuchlik, Evzen; Schmidt, Roland; Koinig, Karin A.; Camarero, Lluis; Flower, Roger J.; Heiri, Oliver; Kamenik, Christian; Korhola, Atte; Leavitt, Peter R.; Psenner, Roland; Renberg, Ingemar;handle: 10261/74378
23 páginas, 7 figuras, 1 tabla. Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship. The authors acknowledge project support from GRACCIE (CSD2007-00067), NITROPIR (CGL2010- 19373), OCUPA (088/2009), the European Research Council (Starting Grant Project, 239858), the Natural Sciences and Engineering Research Council of Canada, the US Department of the Interior, the Commission for Scientific Research in Greenland, the Austrian Science Foundation (FWF R 29N10, FWF J 1963-Geo), the Alpine Research Programme of the Austrian Academy of Sciences (project DETECTIVE), and the Czech Science Foundation (project GACR 526/09/0567). Peer reviewed
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of PaleolimnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-013-9681-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 183 citations 183 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 53visibility views 53 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTABern Open Repository and Information System (BORIS)Article . 2013 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Journal of PaleolimnologyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10933-013-9681-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:American Chemical Society (ACS) Jiří Kopáček; Jiří Kaňa; Svetlana Bičárová; Ivan J. Fernandez; Josef Hejzlar; Marie Kahounová; Stephen A. Norton; Evžen Stuchlík;pmid: 27997122
Climate change can reverse trends of decreasing calcium and magnesium [Ca + Mg] leaching to surface waters in granitic alpine regions recovering from acidification. Despite decreasing concentrations of strong acid anions (-1.4 μeq L-1 yr-1) during 2004-2016 in nonacidic alpine lakes in the Tatra Mountains (Central Europe), the average [Ca + Mg] concentrations increased (2.5 μeq L-1 yr-1), together with elevated terrestrial export of bicarbonate (HCO3-; 3.6 μeq L-1 yr-1). The percent increase in [Ca + Mg] concentrations in nonacidic lakes (0.3-3.2% yr-1) was significantly and positively correlated with scree proportion in the catchment area and negatively correlated with the extent of soil cover. Leaching experiments with freshly crushed granodiorite, the dominant bedrock, showed that accessory calcite and (to a lesser extent) apatite were important sources of Ca. We hypothesize that elevated terrestrial export of [Ca + Mg] and HCO3- resulted from increased weathering caused by accelerated physical erosion of rocks due to elevated climate-related mechanical forces (an increasing frequency of days with high precipitation amounts and air temperatures fluctuating around 0 °C) during the last 2-3 decades. These climatic effects on water chemistry are especially strong in catchments where fragmented rocks are more exposed to weathering, and their position is less stable than in soil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b03575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b03575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:American Chemical Society (ACS) Jiří Kopáček; Jiří Kaňa; Svetlana Bičárová; Ivan J. Fernandez; Josef Hejzlar; Marie Kahounová; Stephen A. Norton; Evžen Stuchlík;pmid: 27997122
Climate change can reverse trends of decreasing calcium and magnesium [Ca + Mg] leaching to surface waters in granitic alpine regions recovering from acidification. Despite decreasing concentrations of strong acid anions (-1.4 μeq L-1 yr-1) during 2004-2016 in nonacidic alpine lakes in the Tatra Mountains (Central Europe), the average [Ca + Mg] concentrations increased (2.5 μeq L-1 yr-1), together with elevated terrestrial export of bicarbonate (HCO3-; 3.6 μeq L-1 yr-1). The percent increase in [Ca + Mg] concentrations in nonacidic lakes (0.3-3.2% yr-1) was significantly and positively correlated with scree proportion in the catchment area and negatively correlated with the extent of soil cover. Leaching experiments with freshly crushed granodiorite, the dominant bedrock, showed that accessory calcite and (to a lesser extent) apatite were important sources of Ca. We hypothesize that elevated terrestrial export of [Ca + Mg] and HCO3- resulted from increased weathering caused by accelerated physical erosion of rocks due to elevated climate-related mechanical forces (an increasing frequency of days with high precipitation amounts and air temperatures fluctuating around 0 °C) during the last 2-3 decades. These climatic effects on water chemistry are especially strong in catchments where fragmented rocks are more exposed to weathering, and their position is less stable than in soil.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b03575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.6b03575&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Josef Křeček; Lada Šedivá; Ladislav Palán; Evžen Stuchlík;doi: 10.3390/w15132458
In headwaters, snowmelt affects the replenishment of water resources as well as the occurrence of natural hazards. The environmental impacts of snowpack were analysed in a small forest catchment (Jizera Mountains, Czech Republic) in the context of forest dynamics, atmospheric deposition, and climate, 1982–2021. Snowmelt dominates in March–May with 41% of the long-term annual water yield; however, there is also seasonal acidification of stream water. Forest clear-cutting together with air pollution control has contributed to a decrease in the acid atmospheric load, but, in the spring, streams’ pH is often below the environmental threshold of 5.3. Snowmelt volumes did not show significant transformation with forest canopy and do not affect summer low flows. Peak flows in the springtime do not exceed summer flash floods (frequencies up to 0.13 against 0.02). Mean annual air temperature is increasing by 0.26 ± 0.08 °C per decade with more intensive warming (0.64 ± 0.1 °C per decade) in the winter season. The seasonal reduction in snowpack duration and maximum snow water equivalent (5.5 ± 1.2 days and 34 ± 8.6 mm per decade) corresponds with the largest drop in snow cover duration reported in zones of seasonal temperatures ranging from −5° to +5 °C.
Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/13/2458/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15132458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/13/2458/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15132458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Josef Křeček; Lada Šedivá; Ladislav Palán; Evžen Stuchlík;doi: 10.3390/w15132458
In headwaters, snowmelt affects the replenishment of water resources as well as the occurrence of natural hazards. The environmental impacts of snowpack were analysed in a small forest catchment (Jizera Mountains, Czech Republic) in the context of forest dynamics, atmospheric deposition, and climate, 1982–2021. Snowmelt dominates in March–May with 41% of the long-term annual water yield; however, there is also seasonal acidification of stream water. Forest clear-cutting together with air pollution control has contributed to a decrease in the acid atmospheric load, but, in the spring, streams’ pH is often below the environmental threshold of 5.3. Snowmelt volumes did not show significant transformation with forest canopy and do not affect summer low flows. Peak flows in the springtime do not exceed summer flash floods (frequencies up to 0.13 against 0.02). Mean annual air temperature is increasing by 0.26 ± 0.08 °C per decade with more intensive warming (0.64 ± 0.1 °C per decade) in the winter season. The seasonal reduction in snowpack duration and maximum snow water equivalent (5.5 ± 1.2 days and 34 ± 8.6 mm per decade) corresponds with the largest drop in snow cover duration reported in zones of seasonal temperatures ranging from −5° to +5 °C.
Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/13/2458/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15132458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4441/15/13/2458/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w15132458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Josef Křeček; Jana Nováková; Ladislav Palán; Eva Pažourková; Evžen Stuchlík;Forest practices in headwater catchments are related to environmental and social contexts. The aim of this study is to analyse the changing protective functions of forests in the upper plain of the Jizera Mts. (North Bohemia, Czech Republic) since the second half of the 19th century. With time, forests have gradually changed from native stands to spruce plantations (Picea abies), introducing exotic conifers (more resistant to air pollution), and, recently, back to more diverse mixed stands. The priority in protective forest functions there shifted from flood protection to integrated control of water resources (quantity and quality). In the 1980s, forest – water interactions were degraded by consequences of extreme acid atmospheric deposition, forest die-back, and extensive clear-cut. In the Jizerka catchment, first signs of recovery were observed in the early 1990s, but, stream waters there are still affected by prolonged acidification. While reconstruction of stream water chemistry at Jizerka follows the drop of the acid deposition in some 5 years, the revival of stream biota takes 10–15 years. In 2071–2100, the projected climate change shows rising annual air temperatures by 3.0–4.6 °C, decreasing water yield by 65–123 mm, 60% drop in ‘minimum residual discharge’, and 20–30% rise in peak-flows. However, these projected environmental changes cannot substantially decline the high potential in water resource recharge, or, start reverse processes in recent recovery from acidification and radically affect the existence of planned mixed forests in the upper plain of the Jizera Mts.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Josef Křeček; Jana Nováková; Ladislav Palán; Eva Pažourková; Evžen Stuchlík;Forest practices in headwater catchments are related to environmental and social contexts. The aim of this study is to analyse the changing protective functions of forests in the upper plain of the Jizera Mts. (North Bohemia, Czech Republic) since the second half of the 19th century. With time, forests have gradually changed from native stands to spruce plantations (Picea abies), introducing exotic conifers (more resistant to air pollution), and, recently, back to more diverse mixed stands. The priority in protective forest functions there shifted from flood protection to integrated control of water resources (quantity and quality). In the 1980s, forest – water interactions were degraded by consequences of extreme acid atmospheric deposition, forest die-back, and extensive clear-cut. In the Jizerka catchment, first signs of recovery were observed in the early 1990s, but, stream waters there are still affected by prolonged acidification. While reconstruction of stream water chemistry at Jizerka follows the drop of the acid deposition in some 5 years, the revival of stream biota takes 10–15 years. In 2071–2100, the projected climate change shows rising annual air temperatures by 3.0–4.6 °C, decreasing water yield by 65–123 mm, 60% drop in ‘minimum residual discharge’, and 20–30% rise in peak-flows. However, these projected environmental changes cannot substantially decline the high potential in water resource recharge, or, start reverse processes in recent recovery from acidification and radically affect the existence of planned mixed forests in the upper plain of the Jizera Mts.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.iswcr.2020.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jiří Kopáček; Jiří Kaňa; Petr Porcal; Evžen Stuchlík;pmid: 34261223
The current recovery of mountain lakes from atmospheric acidification is increasingly affected (both accelerated and/or delayed) by climate change. We evaluated long-term trends in the ionic composition of 30 lakes situated in the alpine zone of the Tatra Mountains, and compared the rates of their recovery with model (MAGIC) simulations done 20 years ago for the 2003-2020 period. The observed recovery was faster than the model forecast, due to greater reductions in acidic deposition than projected. Trends in water composition were further modified by climate change. Rising temperatures increased the length of the growing season and retention of inorganic N and SO42- more in soil-rich compared with soil-poor catchments. In contrast, elevated precipitation and an increase in rainfall intensity reduced water residence time in soils, and consequently reduced N retention, especially in soil-poor catchments. It is likely that increases in rainfall intensity and annual number of days without snow, along with air temperatures fluctuating around the freezing point elevated the physical erosion of rocks, especially in high-elevation, steep, and scree-rich areas where rocks are not thermally insulated and stabilized by soils. Weathering of exposed accessory calcite in the eroded granodiorite bedrock was a source of Ca2+ and HCO3-, while S-bearing minerals likely contributed to lake water SO42- and partly mitigated its deposition-related decrease in scree-rich catchments. The extent of climate effects on changes in the water composition of alpine lakes recovering from acidic deposition thus depended on elevation and cover of soil and scree in catchments. Our results highlight the need for incorporating dominant climate-related process into existing process-based models to increase their reliability in predicting the future development of lake water composition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2021.117522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2021.117522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jiří Kopáček; Jiří Kaňa; Petr Porcal; Evžen Stuchlík;pmid: 34261223
The current recovery of mountain lakes from atmospheric acidification is increasingly affected (both accelerated and/or delayed) by climate change. We evaluated long-term trends in the ionic composition of 30 lakes situated in the alpine zone of the Tatra Mountains, and compared the rates of their recovery with model (MAGIC) simulations done 20 years ago for the 2003-2020 period. The observed recovery was faster than the model forecast, due to greater reductions in acidic deposition than projected. Trends in water composition were further modified by climate change. Rising temperatures increased the length of the growing season and retention of inorganic N and SO42- more in soil-rich compared with soil-poor catchments. In contrast, elevated precipitation and an increase in rainfall intensity reduced water residence time in soils, and consequently reduced N retention, especially in soil-poor catchments. It is likely that increases in rainfall intensity and annual number of days without snow, along with air temperatures fluctuating around the freezing point elevated the physical erosion of rocks, especially in high-elevation, steep, and scree-rich areas where rocks are not thermally insulated and stabilized by soils. Weathering of exposed accessory calcite in the eroded granodiorite bedrock was a source of Ca2+ and HCO3-, while S-bearing minerals likely contributed to lake water SO42- and partly mitigated its deposition-related decrease in scree-rich catchments. The extent of climate effects on changes in the water composition of alpine lakes recovering from acidic deposition thus depended on elevation and cover of soil and scree in catchments. Our results highlight the need for incorporating dominant climate-related process into existing process-based models to increase their reliability in predicting the future development of lake water composition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2021.117522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2021.117522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Kateřina Dočkalová; Evžen Stuchlík; Ladislav Hamerlík; Peter Bitušík; Jan Turek; Marek Svitok; Milan Novikmec; Reinhard Lackner; Martin Dvorak; Jiří Kopáček; Jolana Tátosová; Lluís Camarero; Leopold Füreder; Daniel Vondrák;doi: 10.1093/ee/nvae052
pmid: 38869370
Abstract Chironomids of the genus Diamesa (Meigen, 1835, Diptera: Chironomidae) inhabit cold, oxygen-rich running waters. We have investigated the presence of Diamesa and other freshwater macroinvertebrates at 22 stream sampling sites in 3 European high mountain regions (the Central Pyrenees, the Ötztal Alps, and the Tatra Mountains) to establish suitable temperature conditions for Diamesa dominance. It has been generally accepted that their high abundance was linked to the presence of glaciers; however, we have shown that in the Tatra Mountains, where there are no glaciers, the conditions for the dominance of Diamesa species are created due to permanent snowfields, the geographical orientation of the valley and shading by the surrounding high peaks. The historical connection of Diamesa to glaciers was investigated from the paleolimnological records of subfossil chironomid assemblages from the Bohemian Forest, where glaciers disappeared before or during the Late Glacial period. As expected, water temperature seems to be the main driver of Diamesa distribution, and we determined that the relative abundance of Diamesa species was significantly higher at the sites with a mean July water temperature below 6.5 °C. The Diamesa-dominated stream communities seems to be endangered due to ongoing climate warming and this assumption is supported by our paleolimnological results from the Bohemian Forest lakes, where Diamesa has disappeared due to warming of lake inflows at the beginning of the Holocene. These findings strengthen the former suggestions that some Diamesa species could be used as an indicator for tracking recent environmental changes in vulnerable ecosystems of cold mountain streams.
Environmental Entomo... arrow_drop_down Environmental EntomologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ee/nvae052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Entomo... arrow_drop_down Environmental EntomologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ee/nvae052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Oxford University Press (OUP) Kateřina Dočkalová; Evžen Stuchlík; Ladislav Hamerlík; Peter Bitušík; Jan Turek; Marek Svitok; Milan Novikmec; Reinhard Lackner; Martin Dvorak; Jiří Kopáček; Jolana Tátosová; Lluís Camarero; Leopold Füreder; Daniel Vondrák;doi: 10.1093/ee/nvae052
pmid: 38869370
Abstract Chironomids of the genus Diamesa (Meigen, 1835, Diptera: Chironomidae) inhabit cold, oxygen-rich running waters. We have investigated the presence of Diamesa and other freshwater macroinvertebrates at 22 stream sampling sites in 3 European high mountain regions (the Central Pyrenees, the Ötztal Alps, and the Tatra Mountains) to establish suitable temperature conditions for Diamesa dominance. It has been generally accepted that their high abundance was linked to the presence of glaciers; however, we have shown that in the Tatra Mountains, where there are no glaciers, the conditions for the dominance of Diamesa species are created due to permanent snowfields, the geographical orientation of the valley and shading by the surrounding high peaks. The historical connection of Diamesa to glaciers was investigated from the paleolimnological records of subfossil chironomid assemblages from the Bohemian Forest, where glaciers disappeared before or during the Late Glacial period. As expected, water temperature seems to be the main driver of Diamesa distribution, and we determined that the relative abundance of Diamesa species was significantly higher at the sites with a mean July water temperature below 6.5 °C. The Diamesa-dominated stream communities seems to be endangered due to ongoing climate warming and this assumption is supported by our paleolimnological results from the Bohemian Forest lakes, where Diamesa has disappeared due to warming of lake inflows at the beginning of the Holocene. These findings strengthen the former suggestions that some Diamesa species could be used as an indicator for tracking recent environmental changes in vulnerable ecosystems of cold mountain streams.
Environmental Entomo... arrow_drop_down Environmental EntomologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ee/nvae052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Entomo... arrow_drop_down Environmental EntomologyArticle . 2024 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ee/nvae052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu