- home
- Advanced Search
- Energy Research
- Polymers
- Energy Research
- Polymers
description Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:MDPI AG Funded by:EC | BIO-PLASTICS EUROPEEC| BIO-PLASTICS EUROPEAuthors:Lukas Miksch;
Lars Gutow;Lukas Miksch
Lukas Miksch in OpenAIREReinhard Saborowski;
Reinhard Saborowski
Reinhard Saborowski in OpenAIREBio-based polymers have been suggested as one possible opportunity to counteract the progressive accumulation of microplastics in the environments. The gradual substitution of conventional plastics by bio-based polymers bears a variety of novel materials. The application of bioplastics is determined by their stability and bio-degradability, respectively. With the increasing implementation of bio-based plastics, there is also a demand for rapid and non-elaborate methods to determine their bio-degradability. Here, we propose an improved pH Stat titration assay optimized for bio-based polymers under environmental conditions and controlled temperature. Exemplarily, suspensions of poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) microparticles were incubated with proteolytic and lipolytic enzymes. The rate of hydrolysis, as determined by counter-titration with a diluted base (NaOH), was recorded for two hours. PLA was hydrolyzed by proteolytic enzymes but not by lipase. PBS, in contrast, showed higher hydrolysis rates with lipase than with proteases. The thermal profile of PLA hydrolysis by protease showed an exponential increase from 4 to 30 °C with a temperature quotient Q10 of 5.6. The activation energy was 110 kJ·mol−1. pH-Stat titration proved to be a rapid, sensitive, and reliable procedure supplementing established methods of determining the bio-degradability of polymers under environmental conditions.
Polymers arrow_drop_down Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13060860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Polymers arrow_drop_down Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/polym13060860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu