- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Gabriela Rutkowska; Marek Chalecki;Mariusz Żółtowski;
Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREdoi: 10.3390/su13084182
Striving for reduction of production costs and constraints on natural resources cause the use of waste materials as substitutes of traditional raw materials to become increasingly important. Dynamic development of sewerage systems and sewage treatment plants observed over the recent years leads to increase of mass of the produced sewage sludge. According to the Waste Law, the municipal sewage sludge can be used if it is properly stabilized, e.g., through thermal processing. This process results in significant quantities of fly ash which must be properly utilized. The paper presents results of investigations of influence of partial replacement of cement by the fly ash from sewage sludge on concrete parameters. It was designed as a C20/25 class concrete mix, based on the Portland cement CEM I 42.5R with various ash content. Physical and chemical properties of the ash as well as frost resistance and the compressive strength of the concrete after 28, 56 and 365 days of curing were investigated. The obtained results of investigations confirm the possibility of application of fly ash wastes as a cement substitute in the concrete manufacturing. If a predefined quantity of cement is replaced by the fly ash, then one can obtain cement composite with good strength parameters.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4182/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4182/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Gabriela Rutkowska; Marek Chalecki;Mariusz Żółtowski;
Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREdoi: 10.3390/su13084182
Striving for reduction of production costs and constraints on natural resources cause the use of waste materials as substitutes of traditional raw materials to become increasingly important. Dynamic development of sewerage systems and sewage treatment plants observed over the recent years leads to increase of mass of the produced sewage sludge. According to the Waste Law, the municipal sewage sludge can be used if it is properly stabilized, e.g., through thermal processing. This process results in significant quantities of fly ash which must be properly utilized. The paper presents results of investigations of influence of partial replacement of cement by the fly ash from sewage sludge on concrete parameters. It was designed as a C20/25 class concrete mix, based on the Portland cement CEM I 42.5R with various ash content. Physical and chemical properties of the ash as well as frost resistance and the compressive strength of the concrete after 28, 56 and 365 days of curing were investigated. The obtained results of investigations confirm the possibility of application of fly ash wastes as a cement substitute in the concrete manufacturing. If a predefined quantity of cement is replaced by the fly ash, then one can obtain cement composite with good strength parameters.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4182/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/8/4182/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Walter de Gruyter GmbH Abstract In this work - in view of still decreasing crude oil resources and increasing fuel prices - are presented issues concerning research on development of other, alternative fuel sources including those used in water, land and air transport means. One of them is hydrogen which, while burning, does not produce noxious carbon dioxide but only side effects such as heat and clean water. It is almost true that along with sudden drop of availability and rising price of crude oil many countries face economical paralysis. Any of alternative sources is not capable of supplying even only a basic amount of such energy, not mentioning the whole amount of energy demanded by our civilization. Hydrogen as an independent fuel for internal combustion engines has yet to go a long way to commercialization. to be Co-burning systems (combustion of mixtures)of today used hydrocarbon fuels combined with hydrogen seem closer to this aim. As proved in many investigations the substitution of a part of hydrocarbon fuel by hydrogen enables to make use of beneficial features of both the fuels. One of possible solutions of the problem may be application of an innovative hydrogenic fuel electrolyzer which is presented and evaluated in this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/pomr-2014-0044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/pomr-2014-0044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Walter de Gruyter GmbH Abstract In this work - in view of still decreasing crude oil resources and increasing fuel prices - are presented issues concerning research on development of other, alternative fuel sources including those used in water, land and air transport means. One of them is hydrogen which, while burning, does not produce noxious carbon dioxide but only side effects such as heat and clean water. It is almost true that along with sudden drop of availability and rising price of crude oil many countries face economical paralysis. Any of alternative sources is not capable of supplying even only a basic amount of such energy, not mentioning the whole amount of energy demanded by our civilization. Hydrogen as an independent fuel for internal combustion engines has yet to go a long way to commercialization. to be Co-burning systems (combustion of mixtures)of today used hydrocarbon fuels combined with hydrogen seem closer to this aim. As proved in many investigations the substitution of a part of hydrocarbon fuel by hydrogen enables to make use of beneficial features of both the fuels. One of possible solutions of the problem may be application of an innovative hydrogenic fuel electrolyzer which is presented and evaluated in this paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/pomr-2014-0044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/pomr-2014-0044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:Paweł Ogrodnik;
Paweł Ogrodnik
Paweł Ogrodnik in OpenAIREGabriela Rutkowska;
Gabriela Rutkowska
Gabriela Rutkowska in OpenAIREJacek Szulej;
Jacek Szulej
Jacek Szulej in OpenAIREMariusz Żółtowski;
+2 AuthorsMariusz Żółtowski
Mariusz Żółtowski in OpenAIREPaweł Ogrodnik;
Paweł Ogrodnik
Paweł Ogrodnik in OpenAIREGabriela Rutkowska;
Gabriela Rutkowska
Gabriela Rutkowska in OpenAIREJacek Szulej;
Jacek Szulej
Jacek Szulej in OpenAIREMariusz Żółtowski;
Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREAleksandra Powęzka;
Aleksandra Powęzka
Aleksandra Powęzka in OpenAIREArtur Badyda;
Artur Badyda
Artur Badyda in OpenAIREdoi: 10.3390/en15041399
The aim of research was an influence evaluation of fly ash and zeolite on selected parameters of cement mortar. The scope of the research includes studies of composition and properties of fly ash itself from the thermal transformation of sewage sludge and natural zeolite (clinoptilolite). The research also included the determination of selected mechanical properties of designed mortars, both under normal conditions and after initial thermal loads. A mortar was designed based on CEM I 42.5 R Portland cement with different content of the applied additive in the amount of 5, 10 and 15% of the cement weight. In the course of experimental work, the bending strength of mortars heated at 20, 300, 500, 700 °C were tested. The resulting beam halves (40 × 40 × 160 mm) were used to test the compressive strength. The collected results made it possible to compare the properties of the mortars. The experiment confirmed the possibility of producing cement mortars modified with fly ash from thermal transformation of sewage sludge and zeolite from tuff deposits. The average compressive strength for the mortar containing 5% fly ash and zeolite was set at 28.7 and 27.1 MPa, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1399/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1399/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:Paweł Ogrodnik;
Paweł Ogrodnik
Paweł Ogrodnik in OpenAIREGabriela Rutkowska;
Gabriela Rutkowska
Gabriela Rutkowska in OpenAIREJacek Szulej;
Jacek Szulej
Jacek Szulej in OpenAIREMariusz Żółtowski;
+2 AuthorsMariusz Żółtowski
Mariusz Żółtowski in OpenAIREPaweł Ogrodnik;
Paweł Ogrodnik
Paweł Ogrodnik in OpenAIREGabriela Rutkowska;
Gabriela Rutkowska
Gabriela Rutkowska in OpenAIREJacek Szulej;
Jacek Szulej
Jacek Szulej in OpenAIREMariusz Żółtowski;
Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREAleksandra Powęzka;
Aleksandra Powęzka
Aleksandra Powęzka in OpenAIREArtur Badyda;
Artur Badyda
Artur Badyda in OpenAIREdoi: 10.3390/en15041399
The aim of research was an influence evaluation of fly ash and zeolite on selected parameters of cement mortar. The scope of the research includes studies of composition and properties of fly ash itself from the thermal transformation of sewage sludge and natural zeolite (clinoptilolite). The research also included the determination of selected mechanical properties of designed mortars, both under normal conditions and after initial thermal loads. A mortar was designed based on CEM I 42.5 R Portland cement with different content of the applied additive in the amount of 5, 10 and 15% of the cement weight. In the course of experimental work, the bending strength of mortars heated at 20, 300, 500, 700 °C were tested. The resulting beam halves (40 × 40 × 160 mm) were used to test the compressive strength. The collected results made it possible to compare the properties of the mortars. The experiment confirmed the possibility of producing cement mortars modified with fly ash from thermal transformation of sewage sludge and zeolite from tuff deposits. The average compressive strength for the mortar containing 5% fly ash and zeolite was set at 28.7 and 27.1 MPa, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1399/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1399/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors:Gabriela Rutkowska;
Gabriela Rutkowska
Gabriela Rutkowska in OpenAIREMariusz Żółtowski;
Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREKonstantin Rusakov;
Konstantin Rusakov
Konstantin Rusakov in OpenAIREKatarzyna Pawluk;
+2 AuthorsKatarzyna Pawluk
Katarzyna Pawluk in OpenAIREGabriela Rutkowska;
Gabriela Rutkowska
Gabriela Rutkowska in OpenAIREMariusz Żółtowski;
Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREKonstantin Rusakov;
Konstantin Rusakov
Konstantin Rusakov in OpenAIREKatarzyna Pawluk;
Joanna Andrzejak; Bogdan Żółtowski;Katarzyna Pawluk
Katarzyna Pawluk in OpenAIRECO2 emission limits introduced by the European Union are encouraging works on new-generation materials with reduced clinker content. Currently, fumed silica from hard coal combustion is used in cement and concrete technology in Europe and Poland. Its wide application depends mainly on its chemical and phase composition, especially the reactivity of pozzolanic acids and its high fineness similar to cement Many authors studied the influence of fly ashes from hard coal combustion, in accordance with PN-EN 450-1 and 450-2, on the properties of concrete, including the course of the carbonation process. There are no studies in the literature involving ashes from sewage sludge. The objective of the research is to assess the course of carbonation of concrete produced on the basis of fly ash from the thermal transformation of sewage sludge over time and to describe this phenomenon in a mathematical form. An additional objective was to analyze the physicochemical composition of sludge ash in accordance with the requirements of EN 450-1, ASTM-C618-03. In addition, this study also demonstrated the possibility of producing fly ash-modified standard concrete through the thermal treatment of sewage sludge. The average compressive strengths of Krakow gray concrete after curing for 28, 56, 90, and 365 days were 50.1 MPa, 50.6 MPa, 50.8 MPa, and 61.9 MPa, respectively. On the one hand, the additives introduced in the concrete mixture accelerate the carbonation process by shifting the carbonation front deep into the concrete and, on the other hand, create a denser microstructure In all cases, the largest increase in carbonation depth was observed up to the 56th day of the study, while the smallest increase was observed between 90 and 180 days. The diffusivity decreases and the rate of carbonation is reduced. The determined regression coefficients of hyperbolic models indicate the proper adjustment of the adopted hyperbolic model to the results of laboratory tests under accelerated carbonation conditions (R = 0.85–0.99), regardless of the content of fly ash from sewage sludge in ordinary concrete samples.
Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1838/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1838/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors:Gabriela Rutkowska;
Gabriela Rutkowska
Gabriela Rutkowska in OpenAIREMariusz Żółtowski;
Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREKonstantin Rusakov;
Konstantin Rusakov
Konstantin Rusakov in OpenAIREKatarzyna Pawluk;
+2 AuthorsKatarzyna Pawluk
Katarzyna Pawluk in OpenAIREGabriela Rutkowska;
Gabriela Rutkowska
Gabriela Rutkowska in OpenAIREMariusz Żółtowski;
Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREKonstantin Rusakov;
Konstantin Rusakov
Konstantin Rusakov in OpenAIREKatarzyna Pawluk;
Joanna Andrzejak; Bogdan Żółtowski;Katarzyna Pawluk
Katarzyna Pawluk in OpenAIRECO2 emission limits introduced by the European Union are encouraging works on new-generation materials with reduced clinker content. Currently, fumed silica from hard coal combustion is used in cement and concrete technology in Europe and Poland. Its wide application depends mainly on its chemical and phase composition, especially the reactivity of pozzolanic acids and its high fineness similar to cement Many authors studied the influence of fly ashes from hard coal combustion, in accordance with PN-EN 450-1 and 450-2, on the properties of concrete, including the course of the carbonation process. There are no studies in the literature involving ashes from sewage sludge. The objective of the research is to assess the course of carbonation of concrete produced on the basis of fly ash from the thermal transformation of sewage sludge over time and to describe this phenomenon in a mathematical form. An additional objective was to analyze the physicochemical composition of sludge ash in accordance with the requirements of EN 450-1, ASTM-C618-03. In addition, this study also demonstrated the possibility of producing fly ash-modified standard concrete through the thermal treatment of sewage sludge. The average compressive strengths of Krakow gray concrete after curing for 28, 56, 90, and 365 days were 50.1 MPa, 50.6 MPa, 50.8 MPa, and 61.9 MPa, respectively. On the one hand, the additives introduced in the concrete mixture accelerate the carbonation process by shifting the carbonation front deep into the concrete and, on the other hand, create a denser microstructure In all cases, the largest increase in carbonation depth was observed up to the 56th day of the study, while the smallest increase was observed between 90 and 180 days. The diffusivity decreases and the rate of carbonation is reduced. The determined regression coefficients of hyperbolic models indicate the proper adjustment of the adopted hyperbolic model to the results of laboratory tests under accelerated carbonation conditions (R = 0.85–0.99), regardless of the content of fly ash from sewage sludge in ordinary concrete samples.
Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1838/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1838/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071838&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:MDPI AG Authors:Dhanasingh Sivalinga Vijayan;
Dhanasingh Sivalinga Vijayan
Dhanasingh Sivalinga Vijayan in OpenAIREArvindan Sivasuriyan;
Arvindan Sivasuriyan
Arvindan Sivasuriyan in OpenAIREParthiban Devarajan;
Parthiban Devarajan
Parthiban Devarajan in OpenAIREMartin Krejsa;
+4 AuthorsMartin Krejsa
Martin Krejsa in OpenAIREDhanasingh Sivalinga Vijayan;
Dhanasingh Sivalinga Vijayan
Dhanasingh Sivalinga Vijayan in OpenAIREArvindan Sivasuriyan;
Arvindan Sivasuriyan
Arvindan Sivasuriyan in OpenAIREParthiban Devarajan;
Parthiban Devarajan
Parthiban Devarajan in OpenAIREMartin Krejsa;
Martin Krejsa
Martin Krejsa in OpenAIREMarek Chalecki;
Marek Chalecki
Marek Chalecki in OpenAIREMariusz Żółtowski;
Alicja Kozarzewska;Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREEugeniusz Koda;
Eugeniusz Koda
Eugeniusz Koda in OpenAIREThis comprehensive review focuses on the integration of intelligent technologies, such as the Internet of Things (IoT), Artificial intelligence (AI), and Nondestructive Testing (NDT), in the Structural Health Monitoring (SHM) field of civil engineering. The article discusses intelligent technologies in SHM for residential, commercial, industrial, historical, and special buildings, such as nuclear power plants (NPPs). With the incorporation of intelligent technologies, there have been remarkable advancements in SHM, a crucial aspect of infrastructure safety, reliability, and durability. The combination of SHM and intelligent technologies provides a cost-effective and efficient building monitoring approach, significantly contributing to energy and resource conservation. This article explores using electronic instruments, such as sensors, microcontrollers, and embedded systems, to measure displacement, force, strain, and temperature, which are crucial for detecting structural damage. Implementing intelligent technologies in SHM reduces the reliance on manual and hazardous inspection practices, simplifying and reducing the cost of building monitoring. The article highlights the social, economic, and environmental benefits of adopting intelligent technologies in SHM by presenting key findings from existing research. This review aims to increase the reader’s understanding of the significance of these technologies in enhancing the efficiency of SHM in civil engineering by illuminating their advancements and applications.
Buildings arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2023 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13081903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2023 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13081903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:MDPI AG Authors:Dhanasingh Sivalinga Vijayan;
Dhanasingh Sivalinga Vijayan
Dhanasingh Sivalinga Vijayan in OpenAIREArvindan Sivasuriyan;
Arvindan Sivasuriyan
Arvindan Sivasuriyan in OpenAIREParthiban Devarajan;
Parthiban Devarajan
Parthiban Devarajan in OpenAIREMartin Krejsa;
+4 AuthorsMartin Krejsa
Martin Krejsa in OpenAIREDhanasingh Sivalinga Vijayan;
Dhanasingh Sivalinga Vijayan
Dhanasingh Sivalinga Vijayan in OpenAIREArvindan Sivasuriyan;
Arvindan Sivasuriyan
Arvindan Sivasuriyan in OpenAIREParthiban Devarajan;
Parthiban Devarajan
Parthiban Devarajan in OpenAIREMartin Krejsa;
Martin Krejsa
Martin Krejsa in OpenAIREMarek Chalecki;
Marek Chalecki
Marek Chalecki in OpenAIREMariusz Żółtowski;
Alicja Kozarzewska;Mariusz Żółtowski
Mariusz Żółtowski in OpenAIREEugeniusz Koda;
Eugeniusz Koda
Eugeniusz Koda in OpenAIREThis comprehensive review focuses on the integration of intelligent technologies, such as the Internet of Things (IoT), Artificial intelligence (AI), and Nondestructive Testing (NDT), in the Structural Health Monitoring (SHM) field of civil engineering. The article discusses intelligent technologies in SHM for residential, commercial, industrial, historical, and special buildings, such as nuclear power plants (NPPs). With the incorporation of intelligent technologies, there have been remarkable advancements in SHM, a crucial aspect of infrastructure safety, reliability, and durability. The combination of SHM and intelligent technologies provides a cost-effective and efficient building monitoring approach, significantly contributing to energy and resource conservation. This article explores using electronic instruments, such as sensors, microcontrollers, and embedded systems, to measure displacement, force, strain, and temperature, which are crucial for detecting structural damage. Implementing intelligent technologies in SHM reduces the reliance on manual and hazardous inspection practices, simplifying and reducing the cost of building monitoring. The article highlights the social, economic, and environmental benefits of adopting intelligent technologies in SHM by presenting key findings from existing research. This review aims to increase the reader’s understanding of the significance of these technologies in enhancing the efficiency of SHM in civil engineering by illuminating their advancements and applications.
Buildings arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2023 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13081903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Buildings arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2023 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13081903&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Index Copernicus Abstract Modal analysis is widely used in the removal of defects caused by vibration of infrastructure, structure modification, updating the analytical model, or the control of the state and is used to monitor the vibration of structures in the aerospace and civil engineering mechanics from early 1990 began to pay close attention to the use of operational modal analysis (OMA) in a study of the existing building structures. In this case, the vibration exciter platforms, buildings, towers, bridges, etc. to force Operating (ambient). Here we measure only the response of the force generated by the environment. OMA is also very attractive for aerospace and mechanical engineering. This article presents the results of the existing building structure (reinforced concrete wall using operational modal analysis software and used to carry out the LMS and visualization of the results of such research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/jok-2013-0075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/jok-2013-0075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Index Copernicus Abstract Modal analysis is widely used in the removal of defects caused by vibration of infrastructure, structure modification, updating the analytical model, or the control of the state and is used to monitor the vibration of structures in the aerospace and civil engineering mechanics from early 1990 began to pay close attention to the use of operational modal analysis (OMA) in a study of the existing building structures. In this case, the vibration exciter platforms, buildings, towers, bridges, etc. to force Operating (ambient). Here we measure only the response of the force generated by the environment. OMA is also very attractive for aerospace and mechanical engineering. This article presents the results of the existing building structure (reinforced concrete wall using operational modal analysis software and used to carry out the LMS and visualization of the results of such research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/jok-2013-0075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/jok-2013-0075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu