- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Álvarez González, Lucía; Gharebaghi, M.; Jones, J.M.; Pourkashanian, M.; Williams, A.; Riaza Benito, Juan; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/103089
The devolatilisation step of coal is a vital stage in both air–coal and oxy-coal combustion and there is interest in whether methods of estimating the reaction parameters are similar for both cases. A network pyrolysis model, the FG-DVC (Functional Group-Depolymerisation Vaporisation Cross-linking) code was employed to evaluate the effect of temperature (1273–1773 K) and heating rate (104–106 K/s) on the devolatilisation parameters of two coals of different rank. The products distribution between char and volatiles, and volatiles and NH3/HCN release kinetics were also determined. In order to assess the accuracy of the FG-DVC predictions, the values for nitrogen distribution and devolatilisation kinetics obtained for a temperature of 1273 K and a heating rate of 105 K/s were included as inputs in a Computational Fluid Dynamics (CFD) model for oxy-coal combustion in an entrained flow reactor (EFR). CFD simulations with the programme default devolatilisation kinetics were performed. The oxygen content in oxy-firing conditions ranged between 21% and 35%, and air-firing conditions were also employed as a reference. The experimental coals burnouts and oxygen concentrations from the EFR experiments were employed to test the accuracy of the CFD model. The temperature profiles, burning rates, char burnout and NO emissions during coal combustion in both air and O2/CO2 atmospheres were predicted. The predictions obtained when using the CFD model with FG-DVC coal devolatilisation kinetics were much closer to the experimental values than the predictions obtained with the ANSYS Fluent (version 12) program default kinetics. The predicted NO emissions under oxy-firing conditions were in good agreement with the experimental values. The present study was carried out with financial support from the Spanish MICINN (Project PS-120000-2005-2) co-financed by the European Regional Development Fund. L.A. and J.R. acknowledge funding from the CSIC JAE program, which was cofinanced by the European Social Fund, and the Asturias Regional Government (PCTI program), respectively. MG acknowledges financial support from E.ON UK, and for an EPSRC Dorothy Hodgkin Postgraduate Award. We also thank Dr L Ma for helpful discussions. Peer reviewed
Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 150 Powered bymore_vert Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors: Gil Matellanes, María Victoria; Riaza Benito, Juan; Álvarez González, Lucía; Pevida García, Covadonga; +2 AuthorsGil Matellanes, María Victoria; Riaza Benito, Juan; Álvarez González, Lucía; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/103909
The thermal reactivity and kinetics of five coal chars, a biomass char, and two coal/biomass char blends in an oxy-fuel combustion atmosphere (30%O2–70%CO2) were studied using the non-isothermal thermogravimetric method at three heating rates. Fuel chars were obtained by devolatilization in an entrained flow reactor at 1273 K under N2 and CO2 atmospheres. Three nth-order representative gas–solid models – the volumetric model (VM), the grain model (GM) and the random pore model (RPM) – were employed to describe the reactive behaviour of the chars. The RPM model was found to be the best for describing the reactivity of the high rank coal chars, while VM was the model that best described the reactivity of the bituminous coal chars, the biomass char and the coal-biomass blend char. The kinetic parameters of the chars obtained in N2 and CO2 in an oxy-fuel combustion atmosphere with 30% of oxygen were compared, but no relevant differences were observed. The behaviour of the blend of the bituminous coal (90%wt.) and the biomass (10%wt.) chars resembled that of the individual coal concealing the effect of the biomass. Likewise, no interaction was detected between the high rank coal and the biomass chars during oxy-fuel combustion of the blend. This work was carried out with financial support from the Spanish MICINN (Project PS-120000-2005-2) co-financed by the European Regional Development Fund (ERDF). M.V.G. and L.A. acknowledge funding from the CSIC JAE-Pre and CSIC JAE-Doc programs, respectively, co-financed by the European Social Fund. J.R. acknowledges funding from the Government of the Principado de Asturias (Severo Ochoa program). Peer reviewed
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.10.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 87 citations 87 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 97 Powered bymore_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.10.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Authors: Riaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; +2 AuthorsRiaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/111595
The effect of co-firing coal and biomass on the ignition behaviour and NO emissions was evaluated under both air and O2/CO2 (21-35% O2) atmospheres. The results showed a worsening of the ignition properties in the 21%O2/79%CO2 atmosphere in comparison with air. Furthermore, in order to obtain similar or better ignition properties, the oxygen concentration in the O2/CO2 mixture must be 30% or higher. A decrease of the ignition temperature was observed with the addition of biomass in air and oxy-fuel conditions. The results also indicate that NO emissions in the 21%O2/79%CO2 atmosphere were lower than under air-firing conditions, although they increased in the 30%O2/70%CO2 and 35%O2/65%CO2 atmospheres. The addition of biomass resulted in lower NO emissions in all cases. This work was carried out with financial support from the Spanish MICINN (Project PS-120000-2005-2) co-financed by the European Regional Development Fund. L.A. and M.V.G. acknowledge funding from the CSIC JAE program, co-financed by the European Social Fund. J.R. acknowledges funding from the Government of the Principado de Asturias (Severo Ochoa program) Peer reviewed
Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 33 Powered bymore_vert Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 SpainPublisher:Elsevier BV Authors: Riaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; +2 AuthorsRiaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/103883
The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70% O2 and 35%O2–65%CO2) were compared with those attained in air. The replacement of CO2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O2–79%CO2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected. This work was carried out with financial support from the Spanish MICINN (Project PS- 120000-2005-2) co-financed by the European Regional Development Fund. L.A. and J.R. acknowledge funding from the CSIC JAE program, co-financed by the European Social Fund, and the Government of the Principado de Asturias (Severo Ochoa program), respectively. Peer reviewed
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.06.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 107 citations 107 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 82 Powered bymore_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.06.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors: González Vázquez, María del Pilar; García Fernández, Roberto; Gil Matellanes, María Victoria; Pevida García, Covadonga; +1 AuthorsGonzález Vázquez, María del Pilar; García Fernández, Roberto; Gil Matellanes, María Victoria; Pevida García, Covadonga; Rubiera González, Fernando;handle: 10261/169857
he present study investigates the air-steam gasification of ten commercial and alternative lignocellulosic biomass fuels (pine sawdust, chestnut sawdust, torrefied pine sawdust, torrefied chestnut sawdust, almond shells, cocoa shells, grape pomace, olive stones, pine kernel shells and pine cone leafs) in order to evaluate the product gas composition and the process performance in a bubbling fluidized bed gasifier with focus on the different biomass properties. Accordingly, an effort to correlate the biomass characteristics with the gasification results has been done. Pine kernel shell (PKS) was used to test the effect of the gasification temperature (700, 800 and 900 °C), steam to air ratio in the gasifying agent (S/A = 10/90, 25/75, 50/50 and 70/30) and stoichiometric ratio (SR = 0.13 and 0.25) on the product gas composition, combustible gas (H2 + CO + CH4) production, H2/CO ratio, heating value, energy yield and cold gas efficiency of the obtained gas. Results showed that higher temperature and S/A ratio favored H2 production and gasification performance. A higher value of SR slightly affected the gas composition, but led to a higher process efficiency as a consequence of a higher biomass conversion into gaseous combustible products. All the biomass samples of different origin and characteristics were then gasified at the best experimental conditions found (900 °C, S/A = 70/30, SR = 0.25). Gasification of all the biomasses was feasible and H2 and combustible gas concentrations of 30–39 vol% and 59–78 vol% (inert gas-free basis), respectively, were obtained for the biomasses studied, with energy yields of 8–18 MJ/kgbiomass. Torrefied biomass showed similar combustible gas production than the corresponding raw biomass under the conditions studied, but it gave slightly higher H2 production and efficiency results. Possible correlations of the gasification performance parameters with biomass properties were also analyzed. The results showed positive effects of biomass volatile matter content, C content and high heating value (HHV) on the CO and combustible gas contents, calorific value of the product gas, as well as gas and energy yields. This work has received financial support from the Spanish MINECO (ENE2014-53515-P), cofinanced by the European Regional Development Fund (ERDF). M.P. González-Vázquez acknowledges a fellowship awarded by the Spanish MINECO (FPI program), cofinanced by the European Social Fund. Peer reviewed
Energy Conversion an... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 19visibility views 19 download downloads 345 Powered bymore_vert Energy Conversion an... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Elsevier BV Authors: González Plaza, Marta; González García, Ana Silvia; Rubiera González, Fernando; Pevida García, Covadonga;handle: 10261/109663
12th International Conference on Greenhouse Gas Control Technologies, GHGT-12 Water vapor is the third component of flue gases after N2 and CO2. The permanent dipole moment of the water molecule makes it strongly adsorbable on many adsorbents, which can negatively affect the adsorption capacity of carbon dioxide (even causing an irreversible loss in certain cases). Carbon materials have high stability in moist conditions and present a hydrophobic nature that makes these materials appealing adsorbents for post-combustion CO2 capture. Furthermore, these adsorbents present the added advantage that can be obtained from a globally available, cheap and renewable source of carbon: biomass. In the present work the effect of water vapor on the adsorption performance of CO2 using a microporous biochar developed from olive stones by single- step oxidation is evaluated. The equilibrium of adsorption of water vapor on the selected biochar was studied in a wide temperature range that is considered of interest for the post-combustion case (12.5-85 °C). This biochar presents a moderate water adsorption capacity and type V adsorption isotherms, which will facilitate the desorption of water vapor during cyclic operation. Breakthrough curves were obtained using a gas mixture which composition resembled flue gas in the presence and absence of water vapor. The breakthrough curves of CO2 obtained under dry and humid conditions overlap each other, which indicates that the presence of water vapor does not hinder CO2 adsorption in the short time scale. Moreover, the adsorbent recovered its full adsorption capacity after regeneration. These findings point out that this material could be used to separate CO2 from humid flue gas using cyclic adsorption processes. Work carried out with financial support from the Spanish MINECO (Project ENE2011-23467), co-financed by the European Regional Development Fund (ERDF). M.G.P. acknowledges funding from the CSIC (JAE-Doc program) and A.S.G. acknowledges a contract from the Spanish MINECO (FPI program), both programs are co-financed by the European Social Fund Peer reviewed
Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 65 Powered bymore_vert Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 SpainPublisher:Elsevier BV Authors: Fermoso Domínguez, Javier; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; +1 AuthorsFermoso Domínguez, Javier; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/103792
The non-isothermal thermogravimetric method (TGA) was applied to a bituminous coal (PT), two types of biomass, chestnut residues (CH) and olive stones (OS), and coal–biomass blends in order to investigate their thermal reactivity under steam. Fuel chars were obtained by pyrolysis in a fixed-bed reactor at a final temperature of 1373 K for 30 min. The gasification tests were carried out by thermogravimetric analysis from room temperature to 1373 K at heating rates of 5, 10 and 15 K min−1. After blending, no significant interactions were detected between PT and CH during co-gasification, whereas deviations from the additive behaviour were observed in the PT–OS blend. However, for the two coal–biomass blends, the gasification behaviour resembled that of the individual coal, as this component constituted the larger proportion of the blend. The temperature-programmed reaction (TPR) technique was employed at three different heating rates to analyze noncatalytic gas–solid reactions. Three nth-order representative gas–solid models, the volumetric model (VM), the grain model (GM) and the random pore model (RPM) were applied in order to describe the reactive behaviour of the chars during steam gasification. From these models, the kinetic parameters were determined. The best model for describing the reactivity of the PT, PT–CH and PT–OS samples was the RPM model. VM was the model that best fitted the CH sample, whereas none of the models were suitable for the OS sample. This work was carried out with financial support from the Spanish MICINN (Project PS- 120000-2006-3, ECOCOMBOS), and co-financed by the European Regional Development Fund, ERDF. Peer reviewed
Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2010.04.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 157 Powered bymore_vert Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2010.04.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Elsevier BV Fermoso, J.; Stevanov, C.; Moghtaderi, B.; Arias, B.; Pevida, C.; Plaza, M. G.; Rubiera, F.; Pis, J. J.;handle: 1959.13/916530
Abstract The knowledge of biomass char gasification kinetics is of considerable importance in the design of advanced biomass gasifiers, some of which operate at high pressures. In the present work the effects of pyrolysis temperature, total pressure and CO2 concentration on the gasification of biomass chars have been studied using the thermogravimetric approach. The chars were obtained by pyrolysis in a drop tube furnace reactor at temperatures of 1000 and 1400 °C. The gasification tests were carried out in a pressurized thermogravimetric analyser (PTGA) at different temperatures, pressures and CO2 concentrations. The reactivity measurements were conducted under the kinetically controlled regime, and three nth-order kinetic models as well as the Langmuir–Hinshelwood model were applied to determine the kinetic parameters.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2008.09.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 113 citations 113 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2008.09.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:MDPI AG Authors: María González-Vázquez; Roberto García; Covadonga Pevida; Fernando Rubiera;doi: 10.3390/en10030306
handle: 10261/149375
Investigation into clean energies has been focused on finding an alternative to fossil fuels in order to reduce global warming while at the same time satisfying the world’s energy needs. Biomass gasification is seen as a promising thermochemical conversion technology as it allows useful gaseous products to be obtained from low-energy-density solid fuels. Air–steam mixtures are the most commonly used gasification agents. The gasification performances of several biomass samples and their mixtures were compared. One softwood (pine) and one hardwood (chestnut), their torrefied counterparts, and other Spanish-based biomass wastes such as almond shell, olive stone, grape and olive pomaces or cocoa shell were tested, and their behaviors at several different stoichiometric ratios (SR) and steam/air ratios (S/A) were compared. The optimum SR was found to be in the 0.2–0.3 range for S/A = 75/25. At these conditions a syngas stream with 35% of H2 + CO and a gas yield of 2 L gas/g fuel were obtained, which represents a cold-gas efficiency of almost 50%. The torrefaction process does not significantly affect the quality of the product syngas. Some of the obtained chars were analyzed to assess their use as precursors for catalysts, combustion fuel or for agricultural purposes such as soil amendment.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2017Data sources: Repositorio Institucional de la Universidad de Oviedoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 34 Powered bymore_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2017Data sources: Repositorio Institucional de la Universidad de Oviedoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Antonio Morán; María Victoria Gil; María Victoria Gil; Covadonga Pevida; M.T. Martínez; N. Álvarez-Gutiérrez; Fernando Rubiera;handle: 10261/112334
The biological production of H2 by dark fermentation is being extensively investigated due to the great potential of the two-phase hydrogen/methane fermentation process for recovering energy from carbohydrate-rich wastes. However, the purification of the bio-hydrogen and biogas obtained is needed to produce high-purity H2 and CH4 streams appropriate for industrial application. In this study, the performance of three activated carbons (No1KCla-600, No1KClb-1000 and No2OS-1000), synthesized from phenol–formaldehyde resins, as potential adsorbents for CO2 capture from bio-hydrogen and biogas streams has been evaluated under dynamic conditions. Adsorption–desorption cycles by means of temperature swings were conducted at ambient temperature and atmospheric pressure with CO2/H2 (40/60 and 70/30 vol.%) and CO2/CH4 (50/50 vol.%) binary gas mixtures in a purpose-built fixed-bed set-up. The performance of the resin-derived carbons to separate CO2 was superior to that of reference commercial carbons in terms of CO2 uptake, breakthrough time and column efficiency. These adsorbents presented high CO2/H2 and CO2/CH4 selectivity values, were easily completely regenerated and did not show capacity decay after multiple cycling. Breakthrough capacities reached 2.11 and 2.03 mmol g−1 at 25 °C for 70/30 CO2/H2 and 50/50 CO2/CH4, respectively. The No2OS-1000 adsorbent, produced from phenol–formaldehyde resin and olive stones (20:80 wt.), gave the greatest values of CO2 capture capacity on a volumetric basis and CO2/CH4 selectivity, which may be advantageous to biogas purification applications because it reduces the size of the necessary equipment. This work was carried out with financial support from the Spanish MINECO (Project ENE2011-23467), co-financed by the European Regional Development Fund (ERDF). N.A.-G. acknowledges a FPI Predoctoral fellowship from the Spanish MINECO, co-financed by the European Social Fund. Peer reviewed
Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2015.01.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 22visibility views 22 download downloads 149 Powered bymore_vert Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2015.01.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Álvarez González, Lucía; Gharebaghi, M.; Jones, J.M.; Pourkashanian, M.; Williams, A.; Riaza Benito, Juan; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/103089
The devolatilisation step of coal is a vital stage in both air–coal and oxy-coal combustion and there is interest in whether methods of estimating the reaction parameters are similar for both cases. A network pyrolysis model, the FG-DVC (Functional Group-Depolymerisation Vaporisation Cross-linking) code was employed to evaluate the effect of temperature (1273–1773 K) and heating rate (104–106 K/s) on the devolatilisation parameters of two coals of different rank. The products distribution between char and volatiles, and volatiles and NH3/HCN release kinetics were also determined. In order to assess the accuracy of the FG-DVC predictions, the values for nitrogen distribution and devolatilisation kinetics obtained for a temperature of 1273 K and a heating rate of 105 K/s were included as inputs in a Computational Fluid Dynamics (CFD) model for oxy-coal combustion in an entrained flow reactor (EFR). CFD simulations with the programme default devolatilisation kinetics were performed. The oxygen content in oxy-firing conditions ranged between 21% and 35%, and air-firing conditions were also employed as a reference. The experimental coals burnouts and oxygen concentrations from the EFR experiments were employed to test the accuracy of the CFD model. The temperature profiles, burning rates, char burnout and NO emissions during coal combustion in both air and O2/CO2 atmospheres were predicted. The predictions obtained when using the CFD model with FG-DVC coal devolatilisation kinetics were much closer to the experimental values than the predictions obtained with the ANSYS Fluent (version 12) program default kinetics. The predicted NO emissions under oxy-firing conditions were in good agreement with the experimental values. The present study was carried out with financial support from the Spanish MICINN (Project PS-120000-2005-2) co-financed by the European Regional Development Fund. L.A. and J.R. acknowledge funding from the CSIC JAE program, which was cofinanced by the European Social Fund, and the Asturias Regional Government (PCTI program), respectively. MG acknowledges financial support from E.ON UK, and for an EPSRC Dorothy Hodgkin Postgraduate Award. We also thank Dr L Ma for helpful discussions. Peer reviewed
Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 150 Powered bymore_vert Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.11.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Authors: Gil Matellanes, María Victoria; Riaza Benito, Juan; Álvarez González, Lucía; Pevida García, Covadonga; +2 AuthorsGil Matellanes, María Victoria; Riaza Benito, Juan; Álvarez González, Lucía; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/103909
The thermal reactivity and kinetics of five coal chars, a biomass char, and two coal/biomass char blends in an oxy-fuel combustion atmosphere (30%O2–70%CO2) were studied using the non-isothermal thermogravimetric method at three heating rates. Fuel chars were obtained by devolatilization in an entrained flow reactor at 1273 K under N2 and CO2 atmospheres. Three nth-order representative gas–solid models – the volumetric model (VM), the grain model (GM) and the random pore model (RPM) – were employed to describe the reactive behaviour of the chars. The RPM model was found to be the best for describing the reactivity of the high rank coal chars, while VM was the model that best described the reactivity of the bituminous coal chars, the biomass char and the coal-biomass blend char. The kinetic parameters of the chars obtained in N2 and CO2 in an oxy-fuel combustion atmosphere with 30% of oxygen were compared, but no relevant differences were observed. The behaviour of the blend of the bituminous coal (90%wt.) and the biomass (10%wt.) chars resembled that of the individual coal concealing the effect of the biomass. Likewise, no interaction was detected between the high rank coal and the biomass chars during oxy-fuel combustion of the blend. This work was carried out with financial support from the Spanish MICINN (Project PS-120000-2005-2) co-financed by the European Regional Development Fund (ERDF). M.V.G. and L.A. acknowledge funding from the CSIC JAE-Pre and CSIC JAE-Doc programs, respectively, co-financed by the European Social Fund. J.R. acknowledges funding from the Government of the Principado de Asturias (Severo Ochoa program). Peer reviewed
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.10.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 87 citations 87 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 97 Powered bymore_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.10.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Authors: Riaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; +2 AuthorsRiaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/111595
The effect of co-firing coal and biomass on the ignition behaviour and NO emissions was evaluated under both air and O2/CO2 (21-35% O2) atmospheres. The results showed a worsening of the ignition properties in the 21%O2/79%CO2 atmosphere in comparison with air. Furthermore, in order to obtain similar or better ignition properties, the oxygen concentration in the O2/CO2 mixture must be 30% or higher. A decrease of the ignition temperature was observed with the addition of biomass in air and oxy-fuel conditions. The results also indicate that NO emissions in the 21%O2/79%CO2 atmosphere were lower than under air-firing conditions, although they increased in the 30%O2/70%CO2 and 35%O2/65%CO2 atmospheres. The addition of biomass resulted in lower NO emissions in all cases. This work was carried out with financial support from the Spanish MICINN (Project PS-120000-2005-2) co-financed by the European Regional Development Fund. L.A. and M.V.G. acknowledge funding from the CSIC JAE program, co-financed by the European Social Fund. J.R. acknowledges funding from the Government of the Principado de Asturias (Severo Ochoa program) Peer reviewed
Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 33 Powered bymore_vert Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 SpainPublisher:Elsevier BV Authors: Riaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; +2 AuthorsRiaza Benito, Juan; Álvarez González, Lucía; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/103883
The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70% O2 and 35%O2–65%CO2) were compared with those attained in air. The replacement of CO2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O2–79%CO2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected. This work was carried out with financial support from the Spanish MICINN (Project PS- 120000-2005-2) co-financed by the European Regional Development Fund. L.A. and J.R. acknowledge funding from the CSIC JAE program, co-financed by the European Social Fund, and the Government of the Principado de Asturias (Severo Ochoa program), respectively. Peer reviewed
Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.06.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 107 citations 107 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 82 Powered bymore_vert Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.06.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Elsevier BV Authors: González Vázquez, María del Pilar; García Fernández, Roberto; Gil Matellanes, María Victoria; Pevida García, Covadonga; +1 AuthorsGonzález Vázquez, María del Pilar; García Fernández, Roberto; Gil Matellanes, María Victoria; Pevida García, Covadonga; Rubiera González, Fernando;handle: 10261/169857
he present study investigates the air-steam gasification of ten commercial and alternative lignocellulosic biomass fuels (pine sawdust, chestnut sawdust, torrefied pine sawdust, torrefied chestnut sawdust, almond shells, cocoa shells, grape pomace, olive stones, pine kernel shells and pine cone leafs) in order to evaluate the product gas composition and the process performance in a bubbling fluidized bed gasifier with focus on the different biomass properties. Accordingly, an effort to correlate the biomass characteristics with the gasification results has been done. Pine kernel shell (PKS) was used to test the effect of the gasification temperature (700, 800 and 900 °C), steam to air ratio in the gasifying agent (S/A = 10/90, 25/75, 50/50 and 70/30) and stoichiometric ratio (SR = 0.13 and 0.25) on the product gas composition, combustible gas (H2 + CO + CH4) production, H2/CO ratio, heating value, energy yield and cold gas efficiency of the obtained gas. Results showed that higher temperature and S/A ratio favored H2 production and gasification performance. A higher value of SR slightly affected the gas composition, but led to a higher process efficiency as a consequence of a higher biomass conversion into gaseous combustible products. All the biomass samples of different origin and characteristics were then gasified at the best experimental conditions found (900 °C, S/A = 70/30, SR = 0.25). Gasification of all the biomasses was feasible and H2 and combustible gas concentrations of 30–39 vol% and 59–78 vol% (inert gas-free basis), respectively, were obtained for the biomasses studied, with energy yields of 8–18 MJ/kgbiomass. Torrefied biomass showed similar combustible gas production than the corresponding raw biomass under the conditions studied, but it gave slightly higher H2 production and efficiency results. Possible correlations of the gasification performance parameters with biomass properties were also analyzed. The results showed positive effects of biomass volatile matter content, C content and high heating value (HHV) on the CO and combustible gas contents, calorific value of the product gas, as well as gas and energy yields. This work has received financial support from the Spanish MINECO (ENE2014-53515-P), cofinanced by the European Regional Development Fund (ERDF). M.P. González-Vázquez acknowledges a fellowship awarded by the Spanish MINECO (FPI program), cofinanced by the European Social Fund. Peer reviewed
Energy Conversion an... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 19visibility views 19 download downloads 345 Powered bymore_vert Energy Conversion an... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnergy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.09.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 SpainPublisher:Elsevier BV Authors: González Plaza, Marta; González García, Ana Silvia; Rubiera González, Fernando; Pevida García, Covadonga;handle: 10261/109663
12th International Conference on Greenhouse Gas Control Technologies, GHGT-12 Water vapor is the third component of flue gases after N2 and CO2. The permanent dipole moment of the water molecule makes it strongly adsorbable on many adsorbents, which can negatively affect the adsorption capacity of carbon dioxide (even causing an irreversible loss in certain cases). Carbon materials have high stability in moist conditions and present a hydrophobic nature that makes these materials appealing adsorbents for post-combustion CO2 capture. Furthermore, these adsorbents present the added advantage that can be obtained from a globally available, cheap and renewable source of carbon: biomass. In the present work the effect of water vapor on the adsorption performance of CO2 using a microporous biochar developed from olive stones by single- step oxidation is evaluated. The equilibrium of adsorption of water vapor on the selected biochar was studied in a wide temperature range that is considered of interest for the post-combustion case (12.5-85 °C). This biochar presents a moderate water adsorption capacity and type V adsorption isotherms, which will facilitate the desorption of water vapor during cyclic operation. Breakthrough curves were obtained using a gas mixture which composition resembled flue gas in the presence and absence of water vapor. The breakthrough curves of CO2 obtained under dry and humid conditions overlap each other, which indicates that the presence of water vapor does not hinder CO2 adsorption in the short time scale. Moreover, the adsorbent recovered its full adsorption capacity after regeneration. These findings point out that this material could be used to separate CO2 from humid flue gas using cyclic adsorption processes. Work carried out with financial support from the Spanish MINECO (Project ENE2011-23467), co-financed by the European Regional Development Fund (ERDF). M.G.P. acknowledges funding from the CSIC (JAE-Doc program) and A.S.G. acknowledges a contract from the Spanish MINECO (FPI program), both programs are co-financed by the European Social Fund Peer reviewed
Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 65 Powered bymore_vert Energy Procedia arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 SpainPublisher:Elsevier BV Authors: Fermoso Domínguez, Javier; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; +1 AuthorsFermoso Domínguez, Javier; Gil Matellanes, María Victoria; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando;handle: 10261/103792
The non-isothermal thermogravimetric method (TGA) was applied to a bituminous coal (PT), two types of biomass, chestnut residues (CH) and olive stones (OS), and coal–biomass blends in order to investigate their thermal reactivity under steam. Fuel chars were obtained by pyrolysis in a fixed-bed reactor at a final temperature of 1373 K for 30 min. The gasification tests were carried out by thermogravimetric analysis from room temperature to 1373 K at heating rates of 5, 10 and 15 K min−1. After blending, no significant interactions were detected between PT and CH during co-gasification, whereas deviations from the additive behaviour were observed in the PT–OS blend. However, for the two coal–biomass blends, the gasification behaviour resembled that of the individual coal, as this component constituted the larger proportion of the blend. The temperature-programmed reaction (TPR) technique was employed at three different heating rates to analyze noncatalytic gas–solid reactions. Three nth-order representative gas–solid models, the volumetric model (VM), the grain model (GM) and the random pore model (RPM) were applied in order to describe the reactive behaviour of the chars during steam gasification. From these models, the kinetic parameters were determined. The best model for describing the reactivity of the PT, PT–CH and PT–OS samples was the RPM model. VM was the model that best fitted the CH sample, whereas none of the models were suitable for the OS sample. This work was carried out with financial support from the Spanish MICINN (Project PS- 120000-2006-3, ECOCOMBOS), and co-financed by the European Regional Development Fund, ERDF. Peer reviewed
Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2010.04.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 157 Powered bymore_vert Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2010.04.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Elsevier BV Fermoso, J.; Stevanov, C.; Moghtaderi, B.; Arias, B.; Pevida, C.; Plaza, M. G.; Rubiera, F.; Pis, J. J.;handle: 1959.13/916530
Abstract The knowledge of biomass char gasification kinetics is of considerable importance in the design of advanced biomass gasifiers, some of which operate at high pressures. In the present work the effects of pyrolysis temperature, total pressure and CO2 concentration on the gasification of biomass chars have been studied using the thermogravimetric approach. The chars were obtained by pyrolysis in a drop tube furnace reactor at temperatures of 1000 and 1400 °C. The gasification tests were carried out in a pressurized thermogravimetric analyser (PTGA) at different temperatures, pressures and CO2 concentrations. The reactivity measurements were conducted under the kinetically controlled regime, and three nth-order kinetic models as well as the Langmuir–Hinshelwood model were applied to determine the kinetic parameters.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2008.09.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 113 citations 113 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2008.09.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:MDPI AG Authors: María González-Vázquez; Roberto García; Covadonga Pevida; Fernando Rubiera;doi: 10.3390/en10030306
handle: 10261/149375
Investigation into clean energies has been focused on finding an alternative to fossil fuels in order to reduce global warming while at the same time satisfying the world’s energy needs. Biomass gasification is seen as a promising thermochemical conversion technology as it allows useful gaseous products to be obtained from low-energy-density solid fuels. Air–steam mixtures are the most commonly used gasification agents. The gasification performances of several biomass samples and their mixtures were compared. One softwood (pine) and one hardwood (chestnut), their torrefied counterparts, and other Spanish-based biomass wastes such as almond shell, olive stone, grape and olive pomaces or cocoa shell were tested, and their behaviors at several different stoichiometric ratios (SR) and steam/air ratios (S/A) were compared. The optimum SR was found to be in the 0.2–0.3 range for S/A = 75/25. At these conditions a syngas stream with 35% of H2 + CO and a gas yield of 2 L gas/g fuel were obtained, which represents a cold-gas efficiency of almost 50%. The torrefaction process does not significantly affect the quality of the product syngas. Some of the obtained chars were analyzed to assess their use as precursors for catalysts, combustion fuel or for agricultural purposes such as soil amendment.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2017Data sources: Repositorio Institucional de la Universidad de Oviedoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 34 Powered bymore_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2017Data sources: Repositorio Institucional de la Universidad de Oviedoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10030306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Elsevier BV Antonio Morán; María Victoria Gil; María Victoria Gil; Covadonga Pevida; M.T. Martínez; N. Álvarez-Gutiérrez; Fernando Rubiera;handle: 10261/112334
The biological production of H2 by dark fermentation is being extensively investigated due to the great potential of the two-phase hydrogen/methane fermentation process for recovering energy from carbohydrate-rich wastes. However, the purification of the bio-hydrogen and biogas obtained is needed to produce high-purity H2 and CH4 streams appropriate for industrial application. In this study, the performance of three activated carbons (No1KCla-600, No1KClb-1000 and No2OS-1000), synthesized from phenol–formaldehyde resins, as potential adsorbents for CO2 capture from bio-hydrogen and biogas streams has been evaluated under dynamic conditions. Adsorption–desorption cycles by means of temperature swings were conducted at ambient temperature and atmospheric pressure with CO2/H2 (40/60 and 70/30 vol.%) and CO2/CH4 (50/50 vol.%) binary gas mixtures in a purpose-built fixed-bed set-up. The performance of the resin-derived carbons to separate CO2 was superior to that of reference commercial carbons in terms of CO2 uptake, breakthrough time and column efficiency. These adsorbents presented high CO2/H2 and CO2/CH4 selectivity values, were easily completely regenerated and did not show capacity decay after multiple cycling. Breakthrough capacities reached 2.11 and 2.03 mmol g−1 at 25 °C for 70/30 CO2/H2 and 50/50 CO2/CH4, respectively. The No2OS-1000 adsorbent, produced from phenol–formaldehyde resin and olive stones (20:80 wt.), gave the greatest values of CO2 capture capacity on a volumetric basis and CO2/CH4 selectivity, which may be advantageous to biogas purification applications because it reduces the size of the necessary equipment. This work was carried out with financial support from the Spanish MINECO (Project ENE2011-23467), co-financed by the European Regional Development Fund (ERDF). N.A.-G. acknowledges a FPI Predoctoral fellowship from the Spanish MINECO, co-financed by the European Social Fund. Peer reviewed
Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2015.01.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 22visibility views 22 download downloads 149 Powered bymore_vert Chemical Engineering... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAChemical Engineering JournalArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cej.2015.01.100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu