- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Jiyeol Kim; Zhaxi Suonan; Seung Hyeon Kim; Hyegwang Kim; Fei Zhang; Hee Sun Park; Kun-Seop Lee;doi: 10.3390/su152216065
In the biodiverse Nakdong River estuary, the predominant seagrass and salt marsh species, Zostera japonica and Bolboschoenus planiculmis, are declining due to human and natural pressures. Our study investigated how environmental factors and co-existing salt marsh vegetation impact the growth and reproduction of Z. japonica. Understanding the reproductive dynamics of Z. japonica in this estuary is crucial, as sexual reproduction ensures the resilience and stability of seagrass populations in challenging environments. This study revealed that approximately 49% of Z. japonica shoots flowered, yet none persisted to the subsequent growth season, indicating a reliance on sexual reproduction for population resilience. The presence of competing B. planiculmis shoots and Ulva pertusa indirectly suppressed the growth and reproduction of Z. japonica by reducing light availability. Additionally, environmental stresses that occurred during summer, such as elevated temperatures, reduced salinity, and sediment transport, likely affected the vegetative and reproductive performance of Z. japonica in this estuary. Consequently, Z. japonica in this estuary has adopted a mixed annual life history strategy in response to these environmental oscillations. Our findings highlight the vulnerability of the Z. japonica population to seasonal environmental shifts and interspecies competition in this estuary, offering essential considerations for its conservation and effective management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Jiyeol Kim; Zhaxi Suonan; Seung Hyeon Kim; Hyegwang Kim; Fei Zhang; Hee Sun Park; Kun-Seop Lee;doi: 10.3390/su152216065
In the biodiverse Nakdong River estuary, the predominant seagrass and salt marsh species, Zostera japonica and Bolboschoenus planiculmis, are declining due to human and natural pressures. Our study investigated how environmental factors and co-existing salt marsh vegetation impact the growth and reproduction of Z. japonica. Understanding the reproductive dynamics of Z. japonica in this estuary is crucial, as sexual reproduction ensures the resilience and stability of seagrass populations in challenging environments. This study revealed that approximately 49% of Z. japonica shoots flowered, yet none persisted to the subsequent growth season, indicating a reliance on sexual reproduction for population resilience. The presence of competing B. planiculmis shoots and Ulva pertusa indirectly suppressed the growth and reproduction of Z. japonica by reducing light availability. Additionally, environmental stresses that occurred during summer, such as elevated temperatures, reduced salinity, and sediment transport, likely affected the vegetative and reproductive performance of Z. japonica in this estuary. Consequently, Z. japonica in this estuary has adopted a mixed annual life history strategy in response to these environmental oscillations. Our findings highlight the vulnerability of the Z. japonica population to seasonal environmental shifts and interspecies competition in this estuary, offering essential considerations for its conservation and effective management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Authors: Le-Zheng Qin; Zhaxi Suonan; Seung Hyeon Kim; Kun-Seop Lee;pmid: 34698488
The seagrass ecosystem is among the most efficient natural carbon sinks that can contribute to climate change mitigation. However, little is known about the effects of coastal nutrient enrichment caused by anthropogenic activities and/or climate change on the capacity of the seagrass blue carbon sink. Our experimental manipulations of sediment nutrient enrichment shifted the blue carbon sink capabilities of seagrass meadows. Sediment nutrient enrichment significantly increased the nutrient content of seagrass litter, stimulating the decomposition of rhizome + root litter by ∼10% while retarding the decomposition of leaf litter by ∼5%. Sediment N + P enrichment increased seagrass growth and litter production, while enrichment of N or P alone did not. Organic carbon (Corg) stocks in the surface sediments (0-5 cm) were 34% higher than those in the control with N + P enrichment due to high litter production and the low decomposition rate of nutrient-enriched leaf litter. However, Corg stocks in the subsurface sediments (5-20 cm) did not increase with sediment nutrient enrichment, which is likely due to accelerated decomposition of rhizome + root litter. Our findings suggest that nutrient loading in coastal sediments alters the blue carbon sink and storage capacities in seagrass meadows by changing the rates of carbon sequestration and decomposition.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Authors: Le-Zheng Qin; Zhaxi Suonan; Seung Hyeon Kim; Kun-Seop Lee;pmid: 34698488
The seagrass ecosystem is among the most efficient natural carbon sinks that can contribute to climate change mitigation. However, little is known about the effects of coastal nutrient enrichment caused by anthropogenic activities and/or climate change on the capacity of the seagrass blue carbon sink. Our experimental manipulations of sediment nutrient enrichment shifted the blue carbon sink capabilities of seagrass meadows. Sediment nutrient enrichment significantly increased the nutrient content of seagrass litter, stimulating the decomposition of rhizome + root litter by ∼10% while retarding the decomposition of leaf litter by ∼5%. Sediment N + P enrichment increased seagrass growth and litter production, while enrichment of N or P alone did not. Organic carbon (Corg) stocks in the surface sediments (0-5 cm) were 34% higher than those in the control with N + P enrichment due to high litter production and the low decomposition rate of nutrient-enriched leaf litter. However, Corg stocks in the subsurface sediments (5-20 cm) did not increase with sediment nutrient enrichment, which is likely due to accelerated decomposition of rhizome + root litter. Our findings suggest that nutrient loading in coastal sediments alters the blue carbon sink and storage capacities in seagrass meadows by changing the rates of carbon sequestration and decomposition.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Canada, Portugal, United States, Spain, Norway, Norway, United Kingdom, CanadaPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: G..., NSF | Collaborative Research: G... +1 projectsNSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Biodiversity and Complex Forcing of Ecosystem Functioning in the Marine Foundation Species, Eelgrass: A Global Experimental NetworkJ. Emmett Duffy; John J. Stachowicz; Pamela L. Reynolds; Kevin A. Hovel; Marlene Jahnke; Erik E. Sotka; Christoffer Boström; Katharyn E. Boyer; Mathieu Cusson; Johan Eklöf; Aschwin H. Engelen; Britas Klemens Eriksson; F. Joel Fodrie; John N. Griffin; Clara M. Hereu; Masakazu Hori; A. Randall Hughes; Mikhail V. Ivanov; Pablo Jorgensen; Claudia Kruschel; Kun-Seop Lee; Jonathan S. Lefcheck; Per-Olav Moksnes; Masahiro Nakaoka; Mary I. O’Connor; Nessa E. O’Connor; Robert J. Orth; Bradley J. Peterson; Henning Reiss; Katrin Reiss; J. Paul Richardson; Francesca Rossi; Jennifer L. Ruesink; Stewart T. Schultz; Jonas Thormar; Fiona Tomas; Richard Unsworth; Erin Voigt; Matthew A. Whalen; Shelby L. Ziegler; Jeanine L. Olsen;pmid: 35914147
pmc: PMC9371661
Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass ( Zostera marina ), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.
Université du Québec... arrow_drop_down Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/5p25c7rpData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2022License: CC BY NC NDData sources: University of Groningen Research PortaleScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2121425119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 63visibility views 63 download downloads 93 Powered bymore_vert Université du Québec... arrow_drop_down Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/5p25c7rpData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2022License: CC BY NC NDData sources: University of Groningen Research PortaleScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2121425119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Canada, Portugal, United States, Spain, Norway, Norway, United Kingdom, CanadaPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: G..., NSF | Collaborative Research: G... +1 projectsNSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Biodiversity and Complex Forcing of Ecosystem Functioning in the Marine Foundation Species, Eelgrass: A Global Experimental NetworkJ. Emmett Duffy; John J. Stachowicz; Pamela L. Reynolds; Kevin A. Hovel; Marlene Jahnke; Erik E. Sotka; Christoffer Boström; Katharyn E. Boyer; Mathieu Cusson; Johan Eklöf; Aschwin H. Engelen; Britas Klemens Eriksson; F. Joel Fodrie; John N. Griffin; Clara M. Hereu; Masakazu Hori; A. Randall Hughes; Mikhail V. Ivanov; Pablo Jorgensen; Claudia Kruschel; Kun-Seop Lee; Jonathan S. Lefcheck; Per-Olav Moksnes; Masahiro Nakaoka; Mary I. O’Connor; Nessa E. O’Connor; Robert J. Orth; Bradley J. Peterson; Henning Reiss; Katrin Reiss; J. Paul Richardson; Francesca Rossi; Jennifer L. Ruesink; Stewart T. Schultz; Jonas Thormar; Fiona Tomas; Richard Unsworth; Erin Voigt; Matthew A. Whalen; Shelby L. Ziegler; Jeanine L. Olsen;pmid: 35914147
pmc: PMC9371661
Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass ( Zostera marina ), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.
Université du Québec... arrow_drop_down Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/5p25c7rpData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2022License: CC BY NC NDData sources: University of Groningen Research PortaleScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2121425119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 63visibility views 63 download downloads 93 Powered bymore_vert Université du Québec... arrow_drop_down Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/5p25c7rpData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2022License: CC BY NC NDData sources: University of Groningen Research PortaleScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2121425119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, United States, Canada, Italy, United States, Canada, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedKevin A. Hovel; Oscar Pino; Rod M. Connolly; Meredith S. Diskin; Alistair G. B. Poore; Peter I. Macreadie; Shelby L. Ziegler; Camilla Bertolini; Paige G. Ross; Claudia Kruschel; Torrance C. Hanley; Delbert L. Smee; Brian R. Silliman; Clara M. Hereu; Andrew H. Altieri; Andrew H. Altieri; Mathieu Cusson; Brendan S. Lanham; Bree K. Yednock; J. Emmett Duffy; A. Randall Hughes; Brigitta I. van Tussenbroek; Kristin M. Hultgren; Brent B. Hughes; Midoli Bresch; F. Joel Fodrie; Enrique Lozano-Álvarez; Lane N. Johnston; Michael Rasheed; Jonathan S. Lefcheck; Paul H. York; Nessa E. O'Connor; Kun-Seop Lee; Zachary L. Monteith; Christopher J. Patrick; Andrew D. Olds; Erin Aiello; Jennifer K. O'Leary; Jennifer K. O'Leary; Adriana Vergés; Christopher J. Henderson; Thomas A. Schlacher; Margot Hessing-Lewis; Martin Thiel; Brendan P. Kelaher; Dean S. Janiak; Mallarie E. Yeager; Richard K. F. Unsworth; Ross Whippo; Ross Whippo; Lisandro Benedetti-Cecchi; Augusto A. V. Flores; Olivia J. Graham; Elrika D’Souza; Katrin Reiss; John J. Stachowicz; O. Kennedy Rhoades; O. Kennedy Rhoades; Lindsay C. Gaskins; Matthew A. Whalen; Matthew A. Whalen; Wendel W. Raymond; Paul E. Carnell; Max T. Robinson; Janina Seemann; Teresa Alcoverro; Teresa Alcoverro; Holger Jänes; Fabio Bulleri; Pablo Jorgensen; Francesca Rossi; Stéphanie Cimon; Aaron W. E. Galloway;Significance Consumption transfers energy and materials through food chains and fundamentally influences ecosystem productivity. Therefore, mapping the distribution of consumer feeding intensity is key to understanding how environmental changes influence biodiversity, with consequent effects on trophic transfer and top–down impacts through food webs. Our global comparison of standardized bait consumption in shallow coastal habitats finds a peak in feeding intensity away from the equator that is better explained by the presence of particular consumer families than by latitude or temperature. This study complements recent demonstrations that changes in biodiversity can have similar or larger impacts on ecological processes than those of climate.
Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 165 Powered bymore_vert Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, United States, Canada, Italy, United States, Canada, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedKevin A. Hovel; Oscar Pino; Rod M. Connolly; Meredith S. Diskin; Alistair G. B. Poore; Peter I. Macreadie; Shelby L. Ziegler; Camilla Bertolini; Paige G. Ross; Claudia Kruschel; Torrance C. Hanley; Delbert L. Smee; Brian R. Silliman; Clara M. Hereu; Andrew H. Altieri; Andrew H. Altieri; Mathieu Cusson; Brendan S. Lanham; Bree K. Yednock; J. Emmett Duffy; A. Randall Hughes; Brigitta I. van Tussenbroek; Kristin M. Hultgren; Brent B. Hughes; Midoli Bresch; F. Joel Fodrie; Enrique Lozano-Álvarez; Lane N. Johnston; Michael Rasheed; Jonathan S. Lefcheck; Paul H. York; Nessa E. O'Connor; Kun-Seop Lee; Zachary L. Monteith; Christopher J. Patrick; Andrew D. Olds; Erin Aiello; Jennifer K. O'Leary; Jennifer K. O'Leary; Adriana Vergés; Christopher J. Henderson; Thomas A. Schlacher; Margot Hessing-Lewis; Martin Thiel; Brendan P. Kelaher; Dean S. Janiak; Mallarie E. Yeager; Richard K. F. Unsworth; Ross Whippo; Ross Whippo; Lisandro Benedetti-Cecchi; Augusto A. V. Flores; Olivia J. Graham; Elrika D’Souza; Katrin Reiss; John J. Stachowicz; O. Kennedy Rhoades; O. Kennedy Rhoades; Lindsay C. Gaskins; Matthew A. Whalen; Matthew A. Whalen; Wendel W. Raymond; Paul E. Carnell; Max T. Robinson; Janina Seemann; Teresa Alcoverro; Teresa Alcoverro; Holger Jänes; Fabio Bulleri; Pablo Jorgensen; Francesca Rossi; Stéphanie Cimon; Aaron W. E. Galloway;Significance Consumption transfers energy and materials through food chains and fundamentally influences ecosystem productivity. Therefore, mapping the distribution of consumer feeding intensity is key to understanding how environmental changes influence biodiversity, with consequent effects on trophic transfer and top–down impacts through food webs. Our global comparison of standardized bait consumption in shallow coastal habitats finds a peak in feeding intensity away from the equator that is better explained by the presence of particular consumer families than by latitude or temperature. This study complements recent demonstrations that changes in biodiversity can have similar or larger impacts on ecological processes than those of climate.
Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 165 Powered bymore_vert Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Jiyeol Kim; Zhaxi Suonan; Seung Hyeon Kim; Hyegwang Kim; Fei Zhang; Hee Sun Park; Kun-Seop Lee;doi: 10.3390/su152216065
In the biodiverse Nakdong River estuary, the predominant seagrass and salt marsh species, Zostera japonica and Bolboschoenus planiculmis, are declining due to human and natural pressures. Our study investigated how environmental factors and co-existing salt marsh vegetation impact the growth and reproduction of Z. japonica. Understanding the reproductive dynamics of Z. japonica in this estuary is crucial, as sexual reproduction ensures the resilience and stability of seagrass populations in challenging environments. This study revealed that approximately 49% of Z. japonica shoots flowered, yet none persisted to the subsequent growth season, indicating a reliance on sexual reproduction for population resilience. The presence of competing B. planiculmis shoots and Ulva pertusa indirectly suppressed the growth and reproduction of Z. japonica by reducing light availability. Additionally, environmental stresses that occurred during summer, such as elevated temperatures, reduced salinity, and sediment transport, likely affected the vegetative and reproductive performance of Z. japonica in this estuary. Consequently, Z. japonica in this estuary has adopted a mixed annual life history strategy in response to these environmental oscillations. Our findings highlight the vulnerability of the Z. japonica population to seasonal environmental shifts and interspecies competition in this estuary, offering essential considerations for its conservation and effective management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Jiyeol Kim; Zhaxi Suonan; Seung Hyeon Kim; Hyegwang Kim; Fei Zhang; Hee Sun Park; Kun-Seop Lee;doi: 10.3390/su152216065
In the biodiverse Nakdong River estuary, the predominant seagrass and salt marsh species, Zostera japonica and Bolboschoenus planiculmis, are declining due to human and natural pressures. Our study investigated how environmental factors and co-existing salt marsh vegetation impact the growth and reproduction of Z. japonica. Understanding the reproductive dynamics of Z. japonica in this estuary is crucial, as sexual reproduction ensures the resilience and stability of seagrass populations in challenging environments. This study revealed that approximately 49% of Z. japonica shoots flowered, yet none persisted to the subsequent growth season, indicating a reliance on sexual reproduction for population resilience. The presence of competing B. planiculmis shoots and Ulva pertusa indirectly suppressed the growth and reproduction of Z. japonica by reducing light availability. Additionally, environmental stresses that occurred during summer, such as elevated temperatures, reduced salinity, and sediment transport, likely affected the vegetative and reproductive performance of Z. japonica in this estuary. Consequently, Z. japonica in this estuary has adopted a mixed annual life history strategy in response to these environmental oscillations. Our findings highlight the vulnerability of the Z. japonica population to seasonal environmental shifts and interspecies competition in this estuary, offering essential considerations for its conservation and effective management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152216065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Authors: Le-Zheng Qin; Zhaxi Suonan; Seung Hyeon Kim; Kun-Seop Lee;pmid: 34698488
The seagrass ecosystem is among the most efficient natural carbon sinks that can contribute to climate change mitigation. However, little is known about the effects of coastal nutrient enrichment caused by anthropogenic activities and/or climate change on the capacity of the seagrass blue carbon sink. Our experimental manipulations of sediment nutrient enrichment shifted the blue carbon sink capabilities of seagrass meadows. Sediment nutrient enrichment significantly increased the nutrient content of seagrass litter, stimulating the decomposition of rhizome + root litter by ∼10% while retarding the decomposition of leaf litter by ∼5%. Sediment N + P enrichment increased seagrass growth and litter production, while enrichment of N or P alone did not. Organic carbon (Corg) stocks in the surface sediments (0-5 cm) were 34% higher than those in the control with N + P enrichment due to high litter production and the low decomposition rate of nutrient-enriched leaf litter. However, Corg stocks in the subsurface sediments (5-20 cm) did not increase with sediment nutrient enrichment, which is likely due to accelerated decomposition of rhizome + root litter. Our findings suggest that nutrient loading in coastal sediments alters the blue carbon sink and storage capacities in seagrass meadows by changing the rates of carbon sequestration and decomposition.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Authors: Le-Zheng Qin; Zhaxi Suonan; Seung Hyeon Kim; Kun-Seop Lee;pmid: 34698488
The seagrass ecosystem is among the most efficient natural carbon sinks that can contribute to climate change mitigation. However, little is known about the effects of coastal nutrient enrichment caused by anthropogenic activities and/or climate change on the capacity of the seagrass blue carbon sink. Our experimental manipulations of sediment nutrient enrichment shifted the blue carbon sink capabilities of seagrass meadows. Sediment nutrient enrichment significantly increased the nutrient content of seagrass litter, stimulating the decomposition of rhizome + root litter by ∼10% while retarding the decomposition of leaf litter by ∼5%. Sediment N + P enrichment increased seagrass growth and litter production, while enrichment of N or P alone did not. Organic carbon (Corg) stocks in the surface sediments (0-5 cm) were 34% higher than those in the control with N + P enrichment due to high litter production and the low decomposition rate of nutrient-enriched leaf litter. However, Corg stocks in the subsurface sediments (5-20 cm) did not increase with sediment nutrient enrichment, which is likely due to accelerated decomposition of rhizome + root litter. Our findings suggest that nutrient loading in coastal sediments alters the blue carbon sink and storage capacities in seagrass meadows by changing the rates of carbon sequestration and decomposition.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Canada, Portugal, United States, Spain, Norway, Norway, United Kingdom, CanadaPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: G..., NSF | Collaborative Research: G... +1 projectsNSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Biodiversity and Complex Forcing of Ecosystem Functioning in the Marine Foundation Species, Eelgrass: A Global Experimental NetworkJ. Emmett Duffy; John J. Stachowicz; Pamela L. Reynolds; Kevin A. Hovel; Marlene Jahnke; Erik E. Sotka; Christoffer Boström; Katharyn E. Boyer; Mathieu Cusson; Johan Eklöf; Aschwin H. Engelen; Britas Klemens Eriksson; F. Joel Fodrie; John N. Griffin; Clara M. Hereu; Masakazu Hori; A. Randall Hughes; Mikhail V. Ivanov; Pablo Jorgensen; Claudia Kruschel; Kun-Seop Lee; Jonathan S. Lefcheck; Per-Olav Moksnes; Masahiro Nakaoka; Mary I. O’Connor; Nessa E. O’Connor; Robert J. Orth; Bradley J. Peterson; Henning Reiss; Katrin Reiss; J. Paul Richardson; Francesca Rossi; Jennifer L. Ruesink; Stewart T. Schultz; Jonas Thormar; Fiona Tomas; Richard Unsworth; Erin Voigt; Matthew A. Whalen; Shelby L. Ziegler; Jeanine L. Olsen;pmid: 35914147
pmc: PMC9371661
Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass ( Zostera marina ), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.
Université du Québec... arrow_drop_down Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/5p25c7rpData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2022License: CC BY NC NDData sources: University of Groningen Research PortaleScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2121425119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 63visibility views 63 download downloads 93 Powered bymore_vert Université du Québec... arrow_drop_down Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/5p25c7rpData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2022License: CC BY NC NDData sources: University of Groningen Research PortaleScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2121425119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Canada, Portugal, United States, Spain, Norway, Norway, United Kingdom, CanadaPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:NSF | Collaborative Research: G..., NSF | Collaborative Research: G..., NSF | Collaborative Research: G... +1 projectsNSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Collaborative Research: Global biodiversity and functioning of eelgrass ecosystems ,NSF| Biodiversity and Complex Forcing of Ecosystem Functioning in the Marine Foundation Species, Eelgrass: A Global Experimental NetworkJ. Emmett Duffy; John J. Stachowicz; Pamela L. Reynolds; Kevin A. Hovel; Marlene Jahnke; Erik E. Sotka; Christoffer Boström; Katharyn E. Boyer; Mathieu Cusson; Johan Eklöf; Aschwin H. Engelen; Britas Klemens Eriksson; F. Joel Fodrie; John N. Griffin; Clara M. Hereu; Masakazu Hori; A. Randall Hughes; Mikhail V. Ivanov; Pablo Jorgensen; Claudia Kruschel; Kun-Seop Lee; Jonathan S. Lefcheck; Per-Olav Moksnes; Masahiro Nakaoka; Mary I. O’Connor; Nessa E. O’Connor; Robert J. Orth; Bradley J. Peterson; Henning Reiss; Katrin Reiss; J. Paul Richardson; Francesca Rossi; Jennifer L. Ruesink; Stewart T. Schultz; Jonas Thormar; Fiona Tomas; Richard Unsworth; Erin Voigt; Matthew A. Whalen; Shelby L. Ziegler; Jeanine L. Olsen;pmid: 35914147
pmc: PMC9371661
Distribution of Earth’s biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate–trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth’s environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass ( Zostera marina ), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.
Université du Québec... arrow_drop_down Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/5p25c7rpData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2022License: CC BY NC NDData sources: University of Groningen Research PortaleScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2121425119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 63visibility views 63 download downloads 93 Powered bymore_vert Université du Québec... arrow_drop_down Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NC NDFull-Text: https://escholarship.org/uc/item/5p25c7rpData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2022License: CC BY NC NDData sources: University of Groningen Research PortaleScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2121425119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, United States, Canada, Italy, United States, Canada, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedKevin A. Hovel; Oscar Pino; Rod M. Connolly; Meredith S. Diskin; Alistair G. B. Poore; Peter I. Macreadie; Shelby L. Ziegler; Camilla Bertolini; Paige G. Ross; Claudia Kruschel; Torrance C. Hanley; Delbert L. Smee; Brian R. Silliman; Clara M. Hereu; Andrew H. Altieri; Andrew H. Altieri; Mathieu Cusson; Brendan S. Lanham; Bree K. Yednock; J. Emmett Duffy; A. Randall Hughes; Brigitta I. van Tussenbroek; Kristin M. Hultgren; Brent B. Hughes; Midoli Bresch; F. Joel Fodrie; Enrique Lozano-Álvarez; Lane N. Johnston; Michael Rasheed; Jonathan S. Lefcheck; Paul H. York; Nessa E. O'Connor; Kun-Seop Lee; Zachary L. Monteith; Christopher J. Patrick; Andrew D. Olds; Erin Aiello; Jennifer K. O'Leary; Jennifer K. O'Leary; Adriana Vergés; Christopher J. Henderson; Thomas A. Schlacher; Margot Hessing-Lewis; Martin Thiel; Brendan P. Kelaher; Dean S. Janiak; Mallarie E. Yeager; Richard K. F. Unsworth; Ross Whippo; Ross Whippo; Lisandro Benedetti-Cecchi; Augusto A. V. Flores; Olivia J. Graham; Elrika D’Souza; Katrin Reiss; John J. Stachowicz; O. Kennedy Rhoades; O. Kennedy Rhoades; Lindsay C. Gaskins; Matthew A. Whalen; Matthew A. Whalen; Wendel W. Raymond; Paul E. Carnell; Max T. Robinson; Janina Seemann; Teresa Alcoverro; Teresa Alcoverro; Holger Jänes; Fabio Bulleri; Pablo Jorgensen; Francesca Rossi; Stéphanie Cimon; Aaron W. E. Galloway;Significance Consumption transfers energy and materials through food chains and fundamentally influences ecosystem productivity. Therefore, mapping the distribution of consumer feeding intensity is key to understanding how environmental changes influence biodiversity, with consequent effects on trophic transfer and top–down impacts through food webs. Our global comparison of standardized bait consumption in shallow coastal habitats finds a peak in feeding intensity away from the equator that is better explained by the presence of particular consumer families than by latitude or temperature. This study complements recent demonstrations that changes in biodiversity can have similar or larger impacts on ecological processes than those of climate.
Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 165 Powered bymore_vert Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, United States, Canada, Italy, United States, Canada, United Kingdom, AustraliaPublisher:Proceedings of the National Academy of Sciences Publicly fundedKevin A. Hovel; Oscar Pino; Rod M. Connolly; Meredith S. Diskin; Alistair G. B. Poore; Peter I. Macreadie; Shelby L. Ziegler; Camilla Bertolini; Paige G. Ross; Claudia Kruschel; Torrance C. Hanley; Delbert L. Smee; Brian R. Silliman; Clara M. Hereu; Andrew H. Altieri; Andrew H. Altieri; Mathieu Cusson; Brendan S. Lanham; Bree K. Yednock; J. Emmett Duffy; A. Randall Hughes; Brigitta I. van Tussenbroek; Kristin M. Hultgren; Brent B. Hughes; Midoli Bresch; F. Joel Fodrie; Enrique Lozano-Álvarez; Lane N. Johnston; Michael Rasheed; Jonathan S. Lefcheck; Paul H. York; Nessa E. O'Connor; Kun-Seop Lee; Zachary L. Monteith; Christopher J. Patrick; Andrew D. Olds; Erin Aiello; Jennifer K. O'Leary; Jennifer K. O'Leary; Adriana Vergés; Christopher J. Henderson; Thomas A. Schlacher; Margot Hessing-Lewis; Martin Thiel; Brendan P. Kelaher; Dean S. Janiak; Mallarie E. Yeager; Richard K. F. Unsworth; Ross Whippo; Ross Whippo; Lisandro Benedetti-Cecchi; Augusto A. V. Flores; Olivia J. Graham; Elrika D’Souza; Katrin Reiss; John J. Stachowicz; O. Kennedy Rhoades; O. Kennedy Rhoades; Lindsay C. Gaskins; Matthew A. Whalen; Matthew A. Whalen; Wendel W. Raymond; Paul E. Carnell; Max T. Robinson; Janina Seemann; Teresa Alcoverro; Teresa Alcoverro; Holger Jänes; Fabio Bulleri; Pablo Jorgensen; Francesca Rossi; Stéphanie Cimon; Aaron W. E. Galloway;Significance Consumption transfers energy and materials through food chains and fundamentally influences ecosystem productivity. Therefore, mapping the distribution of consumer feeding intensity is key to understanding how environmental changes influence biodiversity, with consequent effects on trophic transfer and top–down impacts through food webs. Our global comparison of standardized bait consumption in shallow coastal habitats finds a peak in feeding intensity away from the equator that is better explained by the presence of particular consumer families than by latitude or temperature. This study complements recent demonstrations that changes in biodiversity can have similar or larger impacts on ecological processes than those of climate.
Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 165 Powered bymore_vert Archivio della Ricer... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5242q546Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2020Full-Text: http://hdl.handle.net/10072/399669Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2005255117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu