Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 11. Sustainability

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tate, L; Hochgreb, Simone; Hall, J; Bassett, M;

    This paper investigates the energy efficiency and emissions benefits possible with connected and autonomous vehicles (CAVs). Such benefits could be instrumental in decarbonising the transport sector. The impact of CAV technology on operation, usage and specification of vehicles for optimised energy efficiency is considered. Energy consumption reductions of 55% - 66% are identified for a fully autonomous road transport system versus the present. 46% is possible for a CAV on today's roads. Smoothing effects and reduced stoppage in the drive cycle achieve a 31% reduction in travel time if speed limits are not reduced. CAV powertrain optimised for different scenarios requires just 10 kW - 40 kW maximum power whilst the vehicle mass is reduced by up to 40% relative to current cars. Urban-optimised powertrain, with only 10 kW - 15 kW maximum power, allows energy consumption reductions of over 71%. UK energy consumption by cars could be 30% - 45% of current levels with a fully autonomous road transport system, depending on an energy efficiency versus travel time trade off. This could be reduced to just 26% if ride-sharing in urban areas achieves a doubling in average occupancy and travel times remain at today's levels. A comparison of IC engine and battery-electric powertrains optimised for a fully autonomous road transport system indicates the benefits of electric powertrain, with a primary energy requirement per unit distance of the equivalent IC engine CAV. Greenhouse gas emissions per unit distance for the battery-electric CAV are 55% of an IC engine CAV with current UK electricity emissions intensity, reducing to 13% at 2030 emissions target levels. Reduced drive cycle energy requirements (44% of current levels) allow greater range and improved economics of electric vehicles whilst reduced power variance allows smaller batteries for hybrids, similarly helping their case.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.reposito...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://www.repository.cam.ac....
    Conference object
    Data sources: UnpayWall
    https://doi.org/10.4271/2018-0...
    Conference object . 2018 . Peer-reviewed
    Data sources: Crossref
    Apollo
    Conference object . 2019
    Data sources: Datacite
    Apollo
    Conference object . 2018
    Data sources: Apollo
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.reposito...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://www.repository.cam.ac....
      Conference object
      Data sources: UnpayWall
      https://doi.org/10.4271/2018-0...
      Conference object . 2018 . Peer-reviewed
      Data sources: Crossref
      Apollo
      Conference object . 2019
      Data sources: Datacite
      Apollo
      Conference object . 2018
      Data sources: Apollo
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tate, L; Hochgreb, Simone; Hall, J; Bassett, M;

    This paper investigates the energy efficiency and emissions benefits possible with connected and autonomous vehicles (CAVs). Such benefits could be instrumental in decarbonising the transport sector. The impact of CAV technology on operation, usage and specification of vehicles for optimised energy efficiency is considered. Energy consumption reductions of 55% - 66% are identified for a fully autonomous road transport system versus the present. 46% is possible for a CAV on today's roads. Smoothing effects and reduced stoppage in the drive cycle achieve a 31% reduction in travel time if speed limits are not reduced. CAV powertrain optimised for different scenarios requires just 10 kW - 40 kW maximum power whilst the vehicle mass is reduced by up to 40% relative to current cars. Urban-optimised powertrain, with only 10 kW - 15 kW maximum power, allows energy consumption reductions of over 71%. UK energy consumption by cars could be 30% - 45% of current levels with a fully autonomous road transport system, depending on an energy efficiency versus travel time trade off. This could be reduced to just 26% if ride-sharing in urban areas achieves a doubling in average occupancy and travel times remain at today's levels. A comparison of IC engine and battery-electric powertrains optimised for a fully autonomous road transport system indicates the benefits of electric powertrain, with a primary energy requirement per unit distance of the equivalent IC engine CAV. Greenhouse gas emissions per unit distance for the battery-electric CAV are 55% of an IC engine CAV with current UK electricity emissions intensity, reducing to 13% at 2030 emissions target levels. Reduced drive cycle energy requirements (44% of current levels) allow greater range and improved economics of electric vehicles whilst reduced power variance allows smaller batteries for hybrids, similarly helping their case.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.reposito...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://www.repository.cam.ac....
    Conference object
    Data sources: UnpayWall
    https://doi.org/10.4271/2018-0...
    Conference object . 2018 . Peer-reviewed
    Data sources: Crossref
    Apollo
    Conference object . 2019
    Data sources: Datacite
    Apollo
    Conference object . 2018
    Data sources: Apollo
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.reposito...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://www.repository.cam.ac....
      Conference object
      Data sources: UnpayWall
      https://doi.org/10.4271/2018-0...
      Conference object . 2018 . Peer-reviewed
      Data sources: Crossref
      Apollo
      Conference object . 2019
      Data sources: Datacite
      Apollo
      Conference object . 2018
      Data sources: Apollo
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph