- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 India, United States, United Kingdom, United Kingdom, United States, India, NetherlandsPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSERC, NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi...NSERC ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderAndrew S. MacDougall; Ellen Esch; Qingqing Chen; Oliver Carroll; Colin Bonner; Timothy Ohlert; Matthias Siewert; John Sulik; Anna K. Schweiger; Elizabeth T. Borer; Dilip Naidu; Sumanta Bagchi; Yann Hautier; Peter Wilfahrt; Keith Larson; Johan Olofsson; Elsa Cleland; Ranjan Muthukrishnan; Lydia O’Halloran; Juan Alberti; T. Michael Anderson; Carlos A. Arnillas; Jonathan D. Bakker; Isabel C. Barrio; Lori Biederman; Elizabeth H. Boughton; Lars A. Brudvig; Martin Bruschetti; Yvonne Buckley; Miguel N. Bugalho; Marc W. Cadotte; Maria C. Caldeira; Jane A. Catford; Carla D’Antonio; Kendi Davies; Pedro Daleo; Christopher R. Dickman; Ian Donohue; Mary Ellyn DuPre; Kenneth Elgersma; Nico Eisenhauer; Anu Eskelinen; Catalina Estrada; Philip A. Fay; Yanhao Feng; Daniel S. Gruner; Nicole Hagenah; Sylvia Haider; W. Stanley Harpole; Erika Hersch-Green; Anke Jentsch; Kevin Kirkman; Johannes M. H. Knops; Lauri Laanisto; Lucíola S. Lannes; Ramesh Laungani; Ariuntsetseg Lkhagva; Petr Macek; Jason P. Martina; Rebecca L. McCulley; Brett Melbourne; Rachel Mitchell; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Yujie Niu; Meelis Pärtel; Pablo L. Peri; Sally A. Power; Jodi N. Price; Suzanne M. Prober; Zhengwei Ren; Anita C. Risch; Nicholas G. Smith; Grégory Sonnier; Rachel J. Standish; Carly J. Stevens; Michelle Tedder; Pedro Tognetti; G. F. Veen; Risto Virtanen; Glenda M. Wardle; Elizabeth Waring; Amelia A. Wolf; Laura Yahdjian; Eric W. Seabloom;Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.
Lancaster EPrints arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02500-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02500-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, South AfricaPublisher:Wiley Publicly fundedFunded by:DFG, NSF | RCN: Coordination of the ..., DFG | German Centre for Integra... +2 projectsDFG ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderEmma Ladouceur; Shane A. Blowes; Jonathan M. Chase; Adam T. Clark; Magda Garbowski; Juan Alberti; Carlos Alberto Arnillas; Jonathan D. Bakker; Isabel C. Barrio; Siddharth Bharath; Elizabeth T. Borer; Lars A. Brudvig; Marc W. Cadotte; Qingqing Chen; Scott L. Collins; Christopher R. Dickman; Ian Donohue; Guozhen Du; Anne Ebeling; Nico Eisenhauer; Philip A. Fay; Nicole Hagenah; Yann Hautier; Anke Jentsch; Ingibjörg S. Jónsdóttir; Kimberly Komatsu; Andrew MacDougall; Jason P. Martina; Joslin L. Moore; John W. Morgan; Pablo L. Peri; Sally A. Power; Zhengwei Ren; Anita C. Risch; Christiane Roscher; Max A. Schuchardt; Eric W. Seabloom; Carly J. Stevens; G.F. (Ciska) Veen; Risto Virtanen; Glenda M. Wardle; Peter A. Wilfahrt; W. Stanley Harpole;pmid: 36278303
AbstractGlobal change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022Full-Text: http://hdl.handle.net/2263/90745Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.14126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022Full-Text: http://hdl.handle.net/2263/90745Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.14126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, Netherlands, Netherlands, Argentina, India, India, United States, South Africa, Netherlands, United Kingdom, Argentina, Netherlands, NorwayPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN: Coordination of the ..., FCT | LA 1, NSF | LTER: Biodiversity, Multi... +1 projectsNSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,FCT| LA 1 ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDivMarie Spohn; Sumanta Bagchi; Lori A. Biederman; Elizabeth T. Borer; Kari Anne Bråthen; Miguel N. Bugalho; Maria C. Caldeira; Jane A. Catford; Scott L. Collins; Nico Eisenhauer; Nicole Hagenah; Sylvia Haider; Yann Hautier; Johannes M. H. Knops; Sally E. Koerner; Lauri Laanisto; Ylva Lekberg; Jason P. Martina; Holly M. Martinson; Rebecca L. McCulley; Pablo Luís Peri; Petr Macek; Sally A. Power; Anita C. Risch; Christiane Roscher; Eric W. Seabloom; Carly J. Stevens; G. F. Veen; Risto Virtanen; Laura Yahdjian;pmid: 37857640
pmc: PMC10587103
AbstractLittle is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/98817Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveKing's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42340-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 71 citations 71 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/98817Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveKing's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42340-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Argentina, Belgium, Finland, United Kingdom, Brazil, Morocco, Spain, Argentina, Australia, Argentina, ArgentinaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi..., NSF | LTER: Multi-decadal resp...NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and modelsA. Eskelinen; A. Eskelinen; Ian Donohue; Lucíola Santos Lannes; Andrew S. MacDougall; H. Olde Venterink; Jennifer Firn; Eric W. Seabloom; Brent Mortensen; Robert W. Heckman; Robert W. Heckman; Pamela Graff; Mahesh Sankaran; Mahesh Sankaran; S. Campana; Carlos Alberto Arnillas; Peter B. Adler; Daniel S. Gruner; Raúl Ochoa-Hueso; Judith Sitters; Sally A. Power; Maria C. Caldeira; W. S. Harpole; W. S. Harpole; Jason P. Martina; Martin Schütz; Anita C. Risch; Risto Virtanen; Peter A. Wilfahrt; Peter A. Wilfahrt; Carly J. Stevens; Kimberly J. Komatsu; Amanda M. Koltz; Elizabeth T. Borer; Marc W. Cadotte; Miguel N. Bugalho; Joslin L. Moore; Timothy L. Dickson; Chris R. Dickman; Jodi N. Price;pmid: 33247130
pmc: PMC7695826
AbstractHuman activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs (‘consumer-controlled’). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food (‘resource-controlled’). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk.
FAUBA Digital (Facul... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2020License: CC BYUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19870-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FAUBA Digital (Facul... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2020License: CC BYUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19870-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Tianyun Li; Zhiwei Zhong; Dean E. Pearson; Yvette K. Ortega; Wenjun Li; Yanan Li; Hui Zhu; Anita C. Risch; Deli Wang;doi: 10.1111/nph.18912
pmid: 36978282
Summary Parasites can catalyze or inhibit interactions between their hosts and other species, but the ecosystem‐level effects of such interaction modifications are poorly understood. We conducted a large‐scale field experiment in temperate grasslands of China to understand how foliar fungal pathogens influenced top‐down effects of cattle on plant diversity and productivity. When foliar pathogens were suppressed, cattle grazing strongly reduced biomass of the dominant grass, Leymus chinensis, generating competitive release that significantly increased community‐level species richness and evenness. In the absence of grazing, pathogen attack on L. chinensis had no measurable effect on host biomass. However, pathogens disrupted top‐down effects of herbivory by inhibiting grazing effects on plant biomass and species richness. Mechanistically, fungal pathogens were linked to increased alkaloid and reduced nitrogen levels in leaf tissue, which appeared to deter cattle grazing on L. chinensis. In conclusion, foliar pathogens can suppress top‐down effects of large herbivores on grassland community composition and ecosystem function by modifying the strength of their host's interactions with dominant consumers. Parasites may act as modulators of ecosystem function when their direct effects on host abundance are overshadowed by powerful influences on host traits that modify their interactions with competitors, herbivores, or predators.
New Phytologist arrow_drop_down New PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 02 Jun 2025 Belgium, United Kingdom, NetherlandsPublisher:Proceedings of the National Academy of Sciences Publicly fundedPhilip A. Fay; Laureano A. Gherardi; Laura Yahdjian; Peter B. Adler; Jonathan D. Bakker; Siddharth Bharath; Elizabeth T. Borer; W. Stanley Harpole; Erika Hersch-Green; Travis E. Huxman; Andrew S. MacDougall; Anita C. Risch; Eric W. Seabloom; Sumanta Bagchi; Isabel C. Barrio; Lori Biederman; Yvonne M. Buckley; Miguel N. Bugalho; Maria C. Caldeira; Jane A. Catford; QingQing Chen; Elsa E. Cleland; Scott L. Collins; Pedro Daleo; Christopher R. Dickman; Ian Donohue; Mary E. DuPre; Nico Eisenhauer; Anu Eskelinen; Nicole Hagenah; Yann Hautier; Robert W. Heckman; Ingibjörg S. Jónsdóttir; Johannes M. H. Knops; Ramesh Laungani; Jason P. Martina; Rebecca L. McCulley; John W. Morgan; Harry Olde Venterink; Pablo L. Peri; Sally A. Power; Xavier Raynaud; Zhengwei Ren; Christiane Roscher; Melinda D. Smith; Marie Spohn; Carly J. Stevens; Michelle J. Tedder; Risto Virtanen; Glenda M. Wardle; George R. Wheeler;pmid: 40215280
pmc: PMC12012460
Ecosystems are experiencing changing global patterns of mean annual precipitation (MAP) and enrichment with multiple nutrients that potentially colimit plant biomass production. In grasslands, mean aboveground plant biomass is closely related to MAP, but how this relationship changes after enrichment with multiple nutrients remains unclear. We hypothesized the global biomass–MAP relationship becomes steeper with an increasing number of added nutrients, with increases in steepness corresponding to the form of interaction among added nutrients and with increased mediation by changes in plant community diversity. We measured aboveground plant biomass production and species diversity in 71 grasslands on six continents representing the global span of grassland MAP, diversity, management, and soils. We fertilized all sites with nitrogen, phosphorus, and potassium with micronutrients in all combinations to identify which nutrients limited biomass at each site. As hypothesized, fertilizing with one, two, or three nutrients progressively steepened the global biomass–MAP relationship. The magnitude of the increase in steepness corresponded to whether sites were not limited by nitrogen or phosphorus, were limited by either one, or were colimited by both in additive, or synergistic forms. Unexpectedly, we found only weak evidence for mediation of biomass–MAP relationships by plant community diversity because relationships of species richness, evenness, and beta diversity to MAP and to biomass were weak or opposing. Site-level properties including baseline biomass production, soils, and management explained little variation in biomass–MAP relationships. These findings reveal multiple nutrient colimitation as a defining feature of the global grassland biomass–MAP relationship.
Lancaster EPrints arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2025Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2410748122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2025Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2410748122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United States, United Kingdom, United States, United States, Argentina, South Africa, Argentina, AustraliaPublisher:Wiley Funded by:NSF | LTER: Biodiversity, Multi..., NSERC, FCT | LA 1 +1 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSERC ,FCT| LA 1 ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersMartin Schütz; Lauren L. Sullivan; Elizabeth T. Borer; Peter B. Adler; Mahesh Sankaran; Mahesh Sankaran; Jennifer Firn; James B. Grace; Anita C. Risch; Suzanne M. Prober; Andrew S. MacDougall; Eric W. Seabloom; Lori A. Biederman; Eric M. Lind; W. Stanley Harpole; T. Michael Anderson; Pedro Daleo; Daniel M. Griffith; Rebecca L. McCulley; Nicole Hagenah; Peter D. Wragg; Carly J. Stevens; Dana M. Blumenthal;AbstractPlant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.
CORE arrow_drop_down UP Research Data RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/2263/65003Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2018License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/34Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down UP Research Data RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/2263/65003Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2018License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/34Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Public Library of Science (PLoS) Authors: Martin Schütz; Martijn L. Vandegehuchte; Anita C. Risch; Dariusz J. Gwiazdowicz; +1 AuthorsMartin Schütz; Martijn L. Vandegehuchte; Anita C. Risch; Dariusz J. Gwiazdowicz; Ursina Raschein;Recognition is growing that besides ungulates, small vertebrate and invertebrate herbivores are important drivers of grassland functioning. Even though soil microarthropods play key roles in several soil processes, effects of herbivores-especially those of smaller body size-on their communities are not well understood. Therefore, we progressively excluded large, medium and small vertebrate and invertebrate herbivores for three growing seasons using size-selective fences in two vegetation types in subalpine grasslands; short-grass and tall-grass vegetation generated by high and low historical levels of ungulate grazing. Herbivore exclusions generally had few effects on microarthropod communities, but exclusion of all herbivore groups resulted in decreased total springtail and Poduromorpha richness compared with exclusion of only ungulates and medium-sized mammals, regardless of vegetation type. The tall-grass vegetation had a higher total springtail richness and mesostigmatid mite abundance than the short-grass vegetation and a different oribatid mite community composition. Although several biotic and abiotic variables differed between the exclusion treatments and vegetation types, effects on soil microarthropods were best explained by differences in nutrient and fibre content of the previous year's vegetation, a proxy for litter quality, and to a lesser extent soil temperature. After three growing seasons, smaller herbivores had a stronger impact on these functionally important soil microarthropod communities than large herbivores. Over longer time-scales, however, large grazers created two different vegetation types and thereby influenced microarthropod communities bottom-up, e.g. by altering resource quality. Hence, both short- and long-term consequences of herbivory affected the structure of the soil microarthropod community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 NetherlandsPublisher:Wiley Risch, A.C.; Schütz, Martin; Vandegehuchte, Martijn L.; Van Der Putten, W.H.; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, D.J.; Busse, M.D.; Page-Dumroese, D.S.; Zimmermann, Stephan;Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size‐selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long‐term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3−, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties.Net N mineralization differed between ET, but not between vegetation types. Thus, short‐term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long‐term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf‐sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion. The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom‐up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short‐term alterations of the aboveground herbivore community can strongly impact nutrient cycling within ecosystems independent of long‐term management and grazing history.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0300.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0300.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 India, United States, United Kingdom, United Kingdom, United States, India, NetherlandsPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSERC, NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi...NSERC ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderAndrew S. MacDougall; Ellen Esch; Qingqing Chen; Oliver Carroll; Colin Bonner; Timothy Ohlert; Matthias Siewert; John Sulik; Anna K. Schweiger; Elizabeth T. Borer; Dilip Naidu; Sumanta Bagchi; Yann Hautier; Peter Wilfahrt; Keith Larson; Johan Olofsson; Elsa Cleland; Ranjan Muthukrishnan; Lydia O’Halloran; Juan Alberti; T. Michael Anderson; Carlos A. Arnillas; Jonathan D. Bakker; Isabel C. Barrio; Lori Biederman; Elizabeth H. Boughton; Lars A. Brudvig; Martin Bruschetti; Yvonne Buckley; Miguel N. Bugalho; Marc W. Cadotte; Maria C. Caldeira; Jane A. Catford; Carla D’Antonio; Kendi Davies; Pedro Daleo; Christopher R. Dickman; Ian Donohue; Mary Ellyn DuPre; Kenneth Elgersma; Nico Eisenhauer; Anu Eskelinen; Catalina Estrada; Philip A. Fay; Yanhao Feng; Daniel S. Gruner; Nicole Hagenah; Sylvia Haider; W. Stanley Harpole; Erika Hersch-Green; Anke Jentsch; Kevin Kirkman; Johannes M. H. Knops; Lauri Laanisto; Lucíola S. Lannes; Ramesh Laungani; Ariuntsetseg Lkhagva; Petr Macek; Jason P. Martina; Rebecca L. McCulley; Brett Melbourne; Rachel Mitchell; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Yujie Niu; Meelis Pärtel; Pablo L. Peri; Sally A. Power; Jodi N. Price; Suzanne M. Prober; Zhengwei Ren; Anita C. Risch; Nicholas G. Smith; Grégory Sonnier; Rachel J. Standish; Carly J. Stevens; Michelle Tedder; Pedro Tognetti; G. F. Veen; Risto Virtanen; Glenda M. Wardle; Elizabeth Waring; Amelia A. Wolf; Laura Yahdjian; Eric W. Seabloom;Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.
Lancaster EPrints arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02500-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Nature Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-024-02500-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Netherlands, South AfricaPublisher:Wiley Publicly fundedFunded by:DFG, NSF | RCN: Coordination of the ..., DFG | German Centre for Integra... +2 projectsDFG ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and models ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest BorderEmma Ladouceur; Shane A. Blowes; Jonathan M. Chase; Adam T. Clark; Magda Garbowski; Juan Alberti; Carlos Alberto Arnillas; Jonathan D. Bakker; Isabel C. Barrio; Siddharth Bharath; Elizabeth T. Borer; Lars A. Brudvig; Marc W. Cadotte; Qingqing Chen; Scott L. Collins; Christopher R. Dickman; Ian Donohue; Guozhen Du; Anne Ebeling; Nico Eisenhauer; Philip A. Fay; Nicole Hagenah; Yann Hautier; Anke Jentsch; Ingibjörg S. Jónsdóttir; Kimberly Komatsu; Andrew MacDougall; Jason P. Martina; Joslin L. Moore; John W. Morgan; Pablo L. Peri; Sally A. Power; Zhengwei Ren; Anita C. Risch; Christiane Roscher; Max A. Schuchardt; Eric W. Seabloom; Carly J. Stevens; G.F. (Ciska) Veen; Risto Virtanen; Glenda M. Wardle; Peter A. Wilfahrt; W. Stanley Harpole;pmid: 36278303
AbstractGlobal change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022Full-Text: http://hdl.handle.net/2263/90745Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.14126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022Full-Text: http://hdl.handle.net/2263/90745Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.14126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United States, Netherlands, Netherlands, Argentina, India, India, United States, South Africa, Netherlands, United Kingdom, Argentina, Netherlands, NorwayPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN: Coordination of the ..., FCT | LA 1, NSF | LTER: Biodiversity, Multi... +1 projectsNSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,FCT| LA 1 ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,DFG| German Centre for Integrative Biodiversity Research - iDivMarie Spohn; Sumanta Bagchi; Lori A. Biederman; Elizabeth T. Borer; Kari Anne Bråthen; Miguel N. Bugalho; Maria C. Caldeira; Jane A. Catford; Scott L. Collins; Nico Eisenhauer; Nicole Hagenah; Sylvia Haider; Yann Hautier; Johannes M. H. Knops; Sally E. Koerner; Lauri Laanisto; Ylva Lekberg; Jason P. Martina; Holly M. Martinson; Rebecca L. McCulley; Pablo Luís Peri; Petr Macek; Sally A. Power; Anita C. Risch; Christiane Roscher; Eric W. Seabloom; Carly J. Stevens; G. F. Veen; Risto Virtanen; Laura Yahdjian;pmid: 37857640
pmc: PMC10587103
AbstractLittle is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/98817Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveKing's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42340-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 71 citations 71 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/2263/98817Data sources: Bielefeld Academic Search Engine (BASE)Munin - Open Research ArchiveArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveKing's College, London: Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Indian Institute of Science, Bangalore: ePrints@IIscArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-42340-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Argentina, Belgium, Finland, United Kingdom, Brazil, Morocco, Spain, Argentina, Australia, Argentina, ArgentinaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:NSF | RCN: Coordination of the ..., NSF | LTER: Biodiversity, Multi..., NSF | LTER: Multi-decadal resp...NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumers ,NSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSF| LTER: Multi-decadal responses of prairie, savanna, and forest ecosystems to interacting environmental changes: insights from experiments, observations, and modelsA. Eskelinen; A. Eskelinen; Ian Donohue; Lucíola Santos Lannes; Andrew S. MacDougall; H. Olde Venterink; Jennifer Firn; Eric W. Seabloom; Brent Mortensen; Robert W. Heckman; Robert W. Heckman; Pamela Graff; Mahesh Sankaran; Mahesh Sankaran; S. Campana; Carlos Alberto Arnillas; Peter B. Adler; Daniel S. Gruner; Raúl Ochoa-Hueso; Judith Sitters; Sally A. Power; Maria C. Caldeira; W. S. Harpole; W. S. Harpole; Jason P. Martina; Martin Schütz; Anita C. Risch; Risto Virtanen; Peter A. Wilfahrt; Peter A. Wilfahrt; Carly J. Stevens; Kimberly J. Komatsu; Amanda M. Koltz; Elizabeth T. Borer; Marc W. Cadotte; Miguel N. Bugalho; Joslin L. Moore; Timothy L. Dickson; Chris R. Dickman; Jodi N. Price;pmid: 33247130
pmc: PMC7695826
AbstractHuman activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs (‘consumer-controlled’). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food (‘resource-controlled’). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk.
FAUBA Digital (Facul... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2020License: CC BYUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19870-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FAUBA Digital (Facul... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2020License: CC BYUniversity of Oulu Repository - JultikaArticle . 2020Data sources: University of Oulu Repository - JultikaVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-19870-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Tianyun Li; Zhiwei Zhong; Dean E. Pearson; Yvette K. Ortega; Wenjun Li; Yanan Li; Hui Zhu; Anita C. Risch; Deli Wang;doi: 10.1111/nph.18912
pmid: 36978282
Summary Parasites can catalyze or inhibit interactions between their hosts and other species, but the ecosystem‐level effects of such interaction modifications are poorly understood. We conducted a large‐scale field experiment in temperate grasslands of China to understand how foliar fungal pathogens influenced top‐down effects of cattle on plant diversity and productivity. When foliar pathogens were suppressed, cattle grazing strongly reduced biomass of the dominant grass, Leymus chinensis, generating competitive release that significantly increased community‐level species richness and evenness. In the absence of grazing, pathogen attack on L. chinensis had no measurable effect on host biomass. However, pathogens disrupted top‐down effects of herbivory by inhibiting grazing effects on plant biomass and species richness. Mechanistically, fungal pathogens were linked to increased alkaloid and reduced nitrogen levels in leaf tissue, which appeared to deter cattle grazing on L. chinensis. In conclusion, foliar pathogens can suppress top‐down effects of large herbivores on grassland community composition and ecosystem function by modifying the strength of their host's interactions with dominant consumers. Parasites may act as modulators of ecosystem function when their direct effects on host abundance are overshadowed by powerful influences on host traits that modify their interactions with competitors, herbivores, or predators.
New Phytologist arrow_drop_down New PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 02 Jun 2025 Belgium, United Kingdom, NetherlandsPublisher:Proceedings of the National Academy of Sciences Publicly fundedPhilip A. Fay; Laureano A. Gherardi; Laura Yahdjian; Peter B. Adler; Jonathan D. Bakker; Siddharth Bharath; Elizabeth T. Borer; W. Stanley Harpole; Erika Hersch-Green; Travis E. Huxman; Andrew S. MacDougall; Anita C. Risch; Eric W. Seabloom; Sumanta Bagchi; Isabel C. Barrio; Lori Biederman; Yvonne M. Buckley; Miguel N. Bugalho; Maria C. Caldeira; Jane A. Catford; QingQing Chen; Elsa E. Cleland; Scott L. Collins; Pedro Daleo; Christopher R. Dickman; Ian Donohue; Mary E. DuPre; Nico Eisenhauer; Anu Eskelinen; Nicole Hagenah; Yann Hautier; Robert W. Heckman; Ingibjörg S. Jónsdóttir; Johannes M. H. Knops; Ramesh Laungani; Jason P. Martina; Rebecca L. McCulley; John W. Morgan; Harry Olde Venterink; Pablo L. Peri; Sally A. Power; Xavier Raynaud; Zhengwei Ren; Christiane Roscher; Melinda D. Smith; Marie Spohn; Carly J. Stevens; Michelle J. Tedder; Risto Virtanen; Glenda M. Wardle; George R. Wheeler;pmid: 40215280
pmc: PMC12012460
Ecosystems are experiencing changing global patterns of mean annual precipitation (MAP) and enrichment with multiple nutrients that potentially colimit plant biomass production. In grasslands, mean aboveground plant biomass is closely related to MAP, but how this relationship changes after enrichment with multiple nutrients remains unclear. We hypothesized the global biomass–MAP relationship becomes steeper with an increasing number of added nutrients, with increases in steepness corresponding to the form of interaction among added nutrients and with increased mediation by changes in plant community diversity. We measured aboveground plant biomass production and species diversity in 71 grasslands on six continents representing the global span of grassland MAP, diversity, management, and soils. We fertilized all sites with nitrogen, phosphorus, and potassium with micronutrients in all combinations to identify which nutrients limited biomass at each site. As hypothesized, fertilizing with one, two, or three nutrients progressively steepened the global biomass–MAP relationship. The magnitude of the increase in steepness corresponded to whether sites were not limited by nitrogen or phosphorus, were limited by either one, or were colimited by both in additive, or synergistic forms. Unexpectedly, we found only weak evidence for mediation of biomass–MAP relationships by plant community diversity because relationships of species richness, evenness, and beta diversity to MAP and to biomass were weak or opposing. Site-level properties including baseline biomass production, soils, and management explained little variation in biomass–MAP relationships. These findings reveal multiple nutrient colimitation as a defining feature of the global grassland biomass–MAP relationship.
Lancaster EPrints arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2025Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2410748122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefVrije Universiteit Brussel Research PortalArticle . 2025Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2410748122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United States, United Kingdom, United States, United States, Argentina, South Africa, Argentina, AustraliaPublisher:Wiley Funded by:NSF | LTER: Biodiversity, Multi..., NSERC, FCT | LA 1 +1 projectsNSF| LTER: Biodiversity, Multiple Drivers of Environmental Change and Ecosystem Functioning at the Prairie Forest Border ,NSERC ,FCT| LA 1 ,NSF| RCN: Coordination of the Nutrient Network (NutNet), global manipulations of nutrients and consumersMartin Schütz; Lauren L. Sullivan; Elizabeth T. Borer; Peter B. Adler; Mahesh Sankaran; Mahesh Sankaran; Jennifer Firn; James B. Grace; Anita C. Risch; Suzanne M. Prober; Andrew S. MacDougall; Eric W. Seabloom; Lori A. Biederman; Eric M. Lind; W. Stanley Harpole; T. Michael Anderson; Pedro Daleo; Daniel M. Griffith; Rebecca L. McCulley; Nicole Hagenah; Peter D. Wragg; Carly J. Stevens; Dana M. Blumenthal;AbstractPlant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.
CORE arrow_drop_down UP Research Data RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/2263/65003Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2018License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/34Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down UP Research Data RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/2263/65003Data sources: Bielefeld Academic Search Engine (BASE)Utah State University: DigitalCommons@USUArticle . 2018License: PDMFull-Text: https://digitalcommons.usu.edu/eco_pubs/34Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2175&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Public Library of Science (PLoS) Authors: Martin Schütz; Martijn L. Vandegehuchte; Anita C. Risch; Dariusz J. Gwiazdowicz; +1 AuthorsMartin Schütz; Martijn L. Vandegehuchte; Anita C. Risch; Dariusz J. Gwiazdowicz; Ursina Raschein;Recognition is growing that besides ungulates, small vertebrate and invertebrate herbivores are important drivers of grassland functioning. Even though soil microarthropods play key roles in several soil processes, effects of herbivores-especially those of smaller body size-on their communities are not well understood. Therefore, we progressively excluded large, medium and small vertebrate and invertebrate herbivores for three growing seasons using size-selective fences in two vegetation types in subalpine grasslands; short-grass and tall-grass vegetation generated by high and low historical levels of ungulate grazing. Herbivore exclusions generally had few effects on microarthropod communities, but exclusion of all herbivore groups resulted in decreased total springtail and Poduromorpha richness compared with exclusion of only ungulates and medium-sized mammals, regardless of vegetation type. The tall-grass vegetation had a higher total springtail richness and mesostigmatid mite abundance than the short-grass vegetation and a different oribatid mite community composition. Although several biotic and abiotic variables differed between the exclusion treatments and vegetation types, effects on soil microarthropods were best explained by differences in nutrient and fibre content of the previous year's vegetation, a proxy for litter quality, and to a lesser extent soil temperature. After three growing seasons, smaller herbivores had a stronger impact on these functionally important soil microarthropod communities than large herbivores. Over longer time-scales, however, large grazers created two different vegetation types and thereby influenced microarthropod communities bottom-up, e.g. by altering resource quality. Hence, both short- and long-term consequences of herbivory affected the structure of the soil microarthropod community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 NetherlandsPublisher:Wiley Risch, A.C.; Schütz, Martin; Vandegehuchte, Martijn L.; Van Der Putten, W.H.; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, D.J.; Busse, M.D.; Page-Dumroese, D.S.; Zimmermann, Stephan;Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size‐selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long‐term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3−, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties.Net N mineralization differed between ET, but not between vegetation types. Thus, short‐term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long‐term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf‐sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion. The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom‐up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short‐term alterations of the aboveground herbivore community can strongly impact nutrient cycling within ecosystems independent of long‐term management and grazing history.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0300.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0300.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu