- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 FrancePublisher:Public Library of Science (PLoS) Funded by:ANR | iBEFANR| iBEFRaffard, Allan; Cucherousset, Julien; Montoya, José; Richard, Murielle; Acoca-Pidolle, Samson; Poésy, Camille; Garreau, Alexandre; Santoul, Frédéric; Blanchet, Simon;Loss in intraspecific diversity can alter ecosystem functions, but the underlying mechanisms are still elusive, and intraspecific biodiversity–ecosystem function (iBEF) relationships have been restrained to primary producers. Here, we manipulated genetic and functional richness of a fish consumer (Phoxinus phoxinus) to test whether iBEF relationships exist in consumer species and whether they are more likely sustained by genetic or functional richness. We found that both genotypic and functional richness affected ecosystem functioning, either independently or interactively. Loss in genotypic richness reduced benthic invertebrate diversity consistently across functional richness treatments, whereas it reduced zooplankton diversity only when functional richness was high. Finally, losses in genotypic and functional richness altered functions (decomposition) through trophic cascades. We concluded that iBEF relationships lead to substantial top-down effects on entire food chains. The loss of genotypic richness impacted ecological properties as much as the loss of functional richness, probably because it sustains “cryptic” functional diversity.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, Australia, AustraliaPublisher:Elsevier BV Vagnon, Chloé; Olden, Julian D.; Boulêtreau, Stéphanie; Bruel, Rosalie; Chevalier, Mathieu; Garcia, Flavien; Holtgrieve, Gordon; Jackson, Michelle; Thebault, Elisa; Tedesco, Pablo A.; Cucherousset, Julien;Understanding ecosystem responses to global change have long challenged scientists due to notoriously complex properties arising from the interplay between biological and environmental factors. We propose the concept of ecosystem synchrony - that is, similarity in the temporal fluctuations of an ecosystem function between multiple ecosystems - to overcome this challenge. Ecosystem synchrony can manifest due to spatially correlated environmental fluctuations (Moran effect), exchange of energy, nutrients, and organic matter and similarity in biotic characteristics across ecosystems. By taking advantage of long-term surveys, remote sensing and the increased use of high-frequency sensors to assess ecosystem functions, ecosystem synchrony can foster our understanding of the coordinated ecosystem responses at unexplored spatiotemporal scales, identify emerging portfolio effects among ecosystems, and deliver signals of ecosystem perturbations.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024Full-Text: https://hdl.handle.net/10072/433002Data sources: Bielefeld Academic Search Engine (BASE)Trends in Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2024.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024Full-Text: https://hdl.handle.net/10072/433002Data sources: Bielefeld Academic Search Engine (BASE)Trends in Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2024.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, France, France, France, France, France, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | INVABIOECOFEC| INVABIOECOFAuthors: John Robert Britton; Julien Cucherousset; William R. C. Beaumont; David T. Roberts; +4 AuthorsJohn Robert Britton; Julien Cucherousset; William R. C. Beaumont; David T. Roberts; Rodolphe Elie Gozlan; Richard A. Stillman; Sui Chian Phang; Sui Chian Phang;AbstractPredicting fish responses to modified flow regimes is becoming central to fisheries management. In this study we present an agent-based model (ABM) to predict the growth and distribution of young-of-the-year (YOY) and one-year-old (1+) Atlantic salmon and brown trout in response to flow change during summer. A field study of a real population during both natural and low flow conditions provided the simulation environment and validation patterns. Virtual fish were realistic both in terms of bioenergetics and feeding. We tested alternative movement rules to replicate observed patterns of body mass, growth rates, stretch distribution and patch occupancy patterns. Notably, there was no calibration of the model. Virtual fish prioritising consumption rates before predator avoidance replicated observed growth and distribution patterns better than a purely maximising consumption rule. Stream conditions of low predation and harsh winters provide ecological justification for the selection of this behaviour during summer months. Overall, the model was able to predict distribution and growth patterns well across both natural and low flow regimes. The model can be used to support management of salmonids by predicting population responses to predicted flow impacts and associated habitat change.
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016License: CC BYData sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016License: CC BYData sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:ANR | UNITI, ANR | FRADISYN, EC | ECOFEEDANR| UNITI ,ANR| FRADISYN ,EC| ECOFEEDBestion, Elvire; Soriano-Redondo, Andrea; Cucherousset, Julien; Jacob, Staffan; White, Joël; Zinger, Lucie; Fourtune, Lisa; Di Gesu, Lucie; Teyssier, Aimeric; Cote, Julien;Raw data for the article: Bestion, E, Soriano-Redondo, A, Cucherousset, J, Jacob, S, White, J, Zinger, L, Fourtune, L, Di Gesu, L, Teyssier, A, Cote, J. Altered trophic interactions in warming climates: consequences for predator diet breadth and fitness. Proceedings of the Royal Society: B. 2019. 286:20192227. https://doi.org/10.1098/rspb.2019.2227 This data should be cited as: Bestion, E, Soriano-Redondo, A, Cucherousset, J, Jacob, S, White, J, Zinger, L, Fourtune, L, Di Gesu, L, Teyssier, A, Cote, J (2019). Raw data for: "Altered trophic interactions in warming climates: consequences for predator diet breadth and fitness", Bestion et al 2019 Proceedings B. (Version 1). Zenodo. https://doi.org/10.5281/zenodo.3475402 This data is composed of one dataset with 21 columns and a README file Composition of the Bestion_2019_isotopy_dataset_for_zenodo.csv dataset - Individual: numerical index corresponding to each of the 327 individuals in the dataset - Age: age class, J = juvenile (<1 year old), A = adult (1 and 2+ year old) - Sex: F (female) or M (male) - Climate: Present-day climate or Warm climate - Enclosure: enclosure number (10 enclosures, 5 per climatic treatment) - delta13C_september: stable isotope values for delta13C in september - delta15N_september: stable isotope values for delta15N in september - delta13C_september_corrected: stable isotope values for delta13C in september corrected for the stable isotope value of the three invertebrate prey categories - delta15N_september_corrected: stable isotope values for delta15N in september corrected for the stable isotope value of the three invertebrate prey categories - Prop_predator_eaten: proportion of predatory invertebrates eaten by each individual derived from the corrected stable isotope values - Prop_phytophagous_eaten: proportion of phytophagous invertebrates eaten by each individual derived from the corrected stable isotope values - Prop_detritivorous_eaten: proportion of detritivorous invertebrates eaten by each individual derived from the corrected stable isotope values - Levins_diet_index: levins' dietary index corresponding to lizard diet specialization (with 3 = completely generalist and 1 = completely specialist lizard) - Body_Size_september: lizard body size (snout-vent length in mm) - Body_Mass_september: lizard body mass (in g) - Body_Condition_september: lizard body condition (residuals of body mass by body size) - Microbiota_shannon_index: shannon index representing gut microbial bacteria community diversity - Survival_winter: survival during the winter (1 = survived, 0 = died) - Abundance_predator_enclosure: abundance of predatory invertebrates within the enclosure - Abundance_phytophagous_enclosure: abundance of phytophagous invertebrates within the enclosure - Abundance_detitivorous_enclosure: abundance of detritivorous invertebrates within the enclosure
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3475401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 20 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3475401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:EDP Sciences Authors: Nobre, Regina Lucia Guimarães; Cucherousset, Julien; Boulêtreau, Stéphanie; Azémar, Frédéric; +4 AuthorsNobre, Regina Lucia Guimarães; Cucherousset, Julien; Boulêtreau, Stéphanie; Azémar, Frédéric; Parthuisot, Nathalie; Colas, Fanny; Millet, Paul; Tudesque, Loïc;doi: 10.1051/kmae/2025006
The development of novel renewable energy technologies, such as floating photovoltaics (FPVs), is expanding, but their environmental consequences remain understudied. FPVs physically alter freshwater ecosystems by limiting light and wind penetration at the lake surface, while providing new substrates for biofilm development, including diatoms. Diatoms are essential to primary production and carbon cycling in aquatic systems, however, the composition of diatom assemblages on FPV structures remains unexplored. This study aimed to characterise the diatom assemblages colonising FPV floaters and compare them with those in the pelagic and benthic compartments of gravel pit lakes. Results showed significantly lower taxonomic richness and diversity on FPV floaters, followed by pelagic assemblages, with the highest values observed in benthic habitats. Community composition also differed significantly between the three compartments. Community composition also differed significantly across all habitats, but its dominance was particularly pronounced on FPV floaters (72%), compared to 54% and 32% in the benthic and pelagic compartments, respectively. As a low-profile, disturbance-tolerant taxon, Achnanthidium may thrive in low-light conditions created by FPV shading. It can also serve as a good water quality indicator, while baseline studies are needed to assess whether its dominance on FPVs reflects positive conditions for gravel pit lakes. By creating novel artificial habitats in the pelagic zone, FPVs can modify the patterns of primary production and pelagic-benthic coupling that remain to be investigated.
Knowledge and Manage... arrow_drop_down Knowledge and Management of Aquatic EcosystemsArticle . 2025 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/kmae/2025006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Knowledge and Manage... arrow_drop_down Knowledge and Management of Aquatic EcosystemsArticle . 2025 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/kmae/2025006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | ECLIPSE, FCT | LA 1EC| ECLIPSE ,FCT| LA 1Nobre, Regina; Rocha, Sofia Midaur; Healing, Samuel; Ji, Qianfeng; Boulêtreau, Stéphanie; Armstrong, Alona; Cucherousset, Julien;Floating Photovoltaic (FPV) deployments are accelerating worldwide and FPV coverage on water surface can strongly influence their ecological impacts. Yet, a global assessment of their characteristics is still lacking. We identified 643 FPV power plants constructed across the globe. We found that FPV power plants currently exist in 28 countries, predominantly concentrated in Asia. FPV coverage was highly variable between lakes, ranging from 0.004% to 89.9% of lake surface area. Overall, FPV coverage averaged 34.2% (± 22 SD, n=494), varying significantly across continents. FPV coverage was significantly driven by lake size and morphological complexity, with smaller lakes and lakes with simplified morphology having higher FPV coverage. The high variability in FPV coverage worldwide suggests a high context-dependency of their ecological impacts that will likely be stronger in small lakes with higher FPV coverage.
Lancaster EPrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Regina Nobre; Stéphanie Boulêtreau; Julien Cucherousset;pmid: 35821421
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-022-01891-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-022-01891-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Ignasi Arranz; Gaël Grenouillet; Julien Cucherousset;pmid: 37264200
Climate warming can negatively affect the body size of ectothermic organisms and, based on known temperature-size rules, tends to benefit small-bodied organisms. Our understanding of the interactive effects of climate warming and other environmental factors on the temporal changes of body size structure is limited. We quantified the annual trends in size spectra of 583 stream fish communities sampled for more than 20 years across France. The results show that climate warming steepened the slope of the community size spectrum in streams with limited impacts from other human pressures. These changes were caused by increasing abundance of small-bodied individuals and decreasing abundance of large-bodied individuals. However, opposite effects of climate warming on the size spectrum slopes were observed in streams facing high levels of other human pressures. This demonstrates that the effects of temperature on body size structure can depend on other human pressures, disrupting the natural patterns of size spectra in wild communities with potentially strong implications for the fluxes of energy and nutrients in ecosystems.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02083-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02083-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:The Royal Society Funded by:ANR | FRADISYN, ANR | UNITI, EC | ECOFEEDANR| FRADISYN ,ANR| UNITI ,EC| ECOFEEDAimeric Teyssier; Aimeric Teyssier; Staffan Jacob; Lucie Zinger; Lisa Fourtune; Joël White; Lucie Di Gesu; Andrea Soriano-Redondo; Julien Cucherousset; Julien Cote; Elvire Bestion; Elvire Bestion;Species interactions are central in predicting the impairment of biodiversity with climate change. Trophic interactions may be altered through climate-dependent changes in either predator food preferences or prey communities. Yet, climate change impacts on predator diet remain surprisingly poorly understood. We experimentally studied the consequences of 2°C warmer climatic conditions on the trophic niche of a generalist lizard predator. We used a system of semi-natural mesocosms housing a variety of invertebrate species and in which climatic conditions were manipulated. Lizards in warmer climatic conditions ate at a greater predatory to phytophagous invertebrate ratio and had smaller individual dietary breadths. These shifts mainly arose from direct impacts of climate on lizard diets rather than from changes in prey communities. Dietary changes were associated with negative changes in fitness-related traits (body condition, gut microbiota) and survival. We demonstrate that climate change alters trophic interactions through top-predator dietary shifts, which might disrupt eco-evolutionary dynamics.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02340138Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02340138Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Nobre, Regina; Boulêtreau, Stéphanie; Colas, Fanny; Azémar, Frédéric; Tudesque, Loïc; Parthuisot, Nathalie; Fraviou, Pierre; Cucherousset, Julien;The need to mitigate the effects of climate change is accelerating the development of novel technologies such as floating photovoltaics (FPV). Despite FPV being identified as an emerging issue of concern for biodiversity conservation, it is fast spreading globally and our understanding of their potential ecological impacts is limited. We present an overview of the current knowledge and provide an ecological perspective on FPV potential impacts on lake biodiversity and ecosystem functioning. To date, published works have highlighted reductions in light arrival, wind speed and water temperature with increased FPV cover but the subsequent cascading effects on biological and ecological processes remain unknown. We suggest that modifications in light and water temperature can alter individual regulatory processes affecting, primary production and energy transfer within lake food webs. Additionally, FPV can modify the thermal functioning and oxygenation of the water column while providing artificial habitats for organisms. These modifications can affect individual behavior and life-story but also alter the composition of plant and animal communities, trophic interactions and greenhouse gas balances. We suggest that FPV can also modify socioecological activities related to lake use (e.g., angling, leisure) and pressures at the meta-ecosystem level. Overall, we argue that FPV impacts will be highly context-dependent, varying across ranges of environmental conditions and industrial characteristics (e.g., FPV cover and location). Given the ecological and socio-economic implications of FPV, empirical quantifications based on robust designs are urgently needed and we provide here a unique guideline to help developing research programs to monitor these potential impacts.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04264272Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04264272Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 FrancePublisher:Public Library of Science (PLoS) Funded by:ANR | iBEFANR| iBEFRaffard, Allan; Cucherousset, Julien; Montoya, José; Richard, Murielle; Acoca-Pidolle, Samson; Poésy, Camille; Garreau, Alexandre; Santoul, Frédéric; Blanchet, Simon;Loss in intraspecific diversity can alter ecosystem functions, but the underlying mechanisms are still elusive, and intraspecific biodiversity–ecosystem function (iBEF) relationships have been restrained to primary producers. Here, we manipulated genetic and functional richness of a fish consumer (Phoxinus phoxinus) to test whether iBEF relationships exist in consumer species and whether they are more likely sustained by genetic or functional richness. We found that both genotypic and functional richness affected ecosystem functioning, either independently or interactively. Loss in genotypic richness reduced benthic invertebrate diversity consistently across functional richness treatments, whereas it reduced zooplankton diversity only when functional richness was high. Finally, losses in genotypic and functional richness altered functions (decomposition) through trophic cascades. We concluded that iBEF relationships lead to substantial top-down effects on entire food chains. The loss of genotypic richness impacted ecological properties as much as the loss of functional richness, probably because it sustains “cryptic” functional diversity.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, Australia, AustraliaPublisher:Elsevier BV Vagnon, Chloé; Olden, Julian D.; Boulêtreau, Stéphanie; Bruel, Rosalie; Chevalier, Mathieu; Garcia, Flavien; Holtgrieve, Gordon; Jackson, Michelle; Thebault, Elisa; Tedesco, Pablo A.; Cucherousset, Julien;Understanding ecosystem responses to global change have long challenged scientists due to notoriously complex properties arising from the interplay between biological and environmental factors. We propose the concept of ecosystem synchrony - that is, similarity in the temporal fluctuations of an ecosystem function between multiple ecosystems - to overcome this challenge. Ecosystem synchrony can manifest due to spatially correlated environmental fluctuations (Moran effect), exchange of energy, nutrients, and organic matter and similarity in biotic characteristics across ecosystems. By taking advantage of long-term surveys, remote sensing and the increased use of high-frequency sensors to assess ecosystem functions, ecosystem synchrony can foster our understanding of the coordinated ecosystem responses at unexplored spatiotemporal scales, identify emerging portfolio effects among ecosystems, and deliver signals of ecosystem perturbations.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024Full-Text: https://hdl.handle.net/10072/433002Data sources: Bielefeld Academic Search Engine (BASE)Trends in Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2024.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024Full-Text: https://hdl.handle.net/10072/433002Data sources: Bielefeld Academic Search Engine (BASE)Trends in Ecology & EvolutionArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2024.08.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, France, France, France, France, France, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | INVABIOECOFEC| INVABIOECOFAuthors: John Robert Britton; Julien Cucherousset; William R. C. Beaumont; David T. Roberts; +4 AuthorsJohn Robert Britton; Julien Cucherousset; William R. C. Beaumont; David T. Roberts; Rodolphe Elie Gozlan; Richard A. Stillman; Sui Chian Phang; Sui Chian Phang;AbstractPredicting fish responses to modified flow regimes is becoming central to fisheries management. In this study we present an agent-based model (ABM) to predict the growth and distribution of young-of-the-year (YOY) and one-year-old (1+) Atlantic salmon and brown trout in response to flow change during summer. A field study of a real population during both natural and low flow conditions provided the simulation environment and validation patterns. Virtual fish were realistic both in terms of bioenergetics and feeding. We tested alternative movement rules to replicate observed patterns of body mass, growth rates, stretch distribution and patch occupancy patterns. Notably, there was no calibration of the model. Virtual fish prioritising consumption rates before predator avoidance replicated observed growth and distribution patterns better than a purely maximising consumption rule. Stream conditions of low predation and harsh winters provide ecological justification for the selection of this behaviour during summer months. Overall, the model was able to predict distribution and growth patterns well across both natural and low flow regimes. The model can be used to support management of salmonids by predicting population responses to predicted flow impacts and associated habitat change.
Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016License: CC BYData sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016License: CC BYData sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Funded by:ANR | UNITI, ANR | FRADISYN, EC | ECOFEEDANR| UNITI ,ANR| FRADISYN ,EC| ECOFEEDBestion, Elvire; Soriano-Redondo, Andrea; Cucherousset, Julien; Jacob, Staffan; White, Joël; Zinger, Lucie; Fourtune, Lisa; Di Gesu, Lucie; Teyssier, Aimeric; Cote, Julien;Raw data for the article: Bestion, E, Soriano-Redondo, A, Cucherousset, J, Jacob, S, White, J, Zinger, L, Fourtune, L, Di Gesu, L, Teyssier, A, Cote, J. Altered trophic interactions in warming climates: consequences for predator diet breadth and fitness. Proceedings of the Royal Society: B. 2019. 286:20192227. https://doi.org/10.1098/rspb.2019.2227 This data should be cited as: Bestion, E, Soriano-Redondo, A, Cucherousset, J, Jacob, S, White, J, Zinger, L, Fourtune, L, Di Gesu, L, Teyssier, A, Cote, J (2019). Raw data for: "Altered trophic interactions in warming climates: consequences for predator diet breadth and fitness", Bestion et al 2019 Proceedings B. (Version 1). Zenodo. https://doi.org/10.5281/zenodo.3475402 This data is composed of one dataset with 21 columns and a README file Composition of the Bestion_2019_isotopy_dataset_for_zenodo.csv dataset - Individual: numerical index corresponding to each of the 327 individuals in the dataset - Age: age class, J = juvenile (<1 year old), A = adult (1 and 2+ year old) - Sex: F (female) or M (male) - Climate: Present-day climate or Warm climate - Enclosure: enclosure number (10 enclosures, 5 per climatic treatment) - delta13C_september: stable isotope values for delta13C in september - delta15N_september: stable isotope values for delta15N in september - delta13C_september_corrected: stable isotope values for delta13C in september corrected for the stable isotope value of the three invertebrate prey categories - delta15N_september_corrected: stable isotope values for delta15N in september corrected for the stable isotope value of the three invertebrate prey categories - Prop_predator_eaten: proportion of predatory invertebrates eaten by each individual derived from the corrected stable isotope values - Prop_phytophagous_eaten: proportion of phytophagous invertebrates eaten by each individual derived from the corrected stable isotope values - Prop_detritivorous_eaten: proportion of detritivorous invertebrates eaten by each individual derived from the corrected stable isotope values - Levins_diet_index: levins' dietary index corresponding to lizard diet specialization (with 3 = completely generalist and 1 = completely specialist lizard) - Body_Size_september: lizard body size (snout-vent length in mm) - Body_Mass_september: lizard body mass (in g) - Body_Condition_september: lizard body condition (residuals of body mass by body size) - Microbiota_shannon_index: shannon index representing gut microbial bacteria community diversity - Survival_winter: survival during the winter (1 = survived, 0 = died) - Abundance_predator_enclosure: abundance of predatory invertebrates within the enclosure - Abundance_phytophagous_enclosure: abundance of phytophagous invertebrates within the enclosure - Abundance_detitivorous_enclosure: abundance of detritivorous invertebrates within the enclosure
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3475401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 20 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3475401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:EDP Sciences Authors: Nobre, Regina Lucia Guimarães; Cucherousset, Julien; Boulêtreau, Stéphanie; Azémar, Frédéric; +4 AuthorsNobre, Regina Lucia Guimarães; Cucherousset, Julien; Boulêtreau, Stéphanie; Azémar, Frédéric; Parthuisot, Nathalie; Colas, Fanny; Millet, Paul; Tudesque, Loïc;doi: 10.1051/kmae/2025006
The development of novel renewable energy technologies, such as floating photovoltaics (FPVs), is expanding, but their environmental consequences remain understudied. FPVs physically alter freshwater ecosystems by limiting light and wind penetration at the lake surface, while providing new substrates for biofilm development, including diatoms. Diatoms are essential to primary production and carbon cycling in aquatic systems, however, the composition of diatom assemblages on FPV structures remains unexplored. This study aimed to characterise the diatom assemblages colonising FPV floaters and compare them with those in the pelagic and benthic compartments of gravel pit lakes. Results showed significantly lower taxonomic richness and diversity on FPV floaters, followed by pelagic assemblages, with the highest values observed in benthic habitats. Community composition also differed significantly between the three compartments. Community composition also differed significantly across all habitats, but its dominance was particularly pronounced on FPV floaters (72%), compared to 54% and 32% in the benthic and pelagic compartments, respectively. As a low-profile, disturbance-tolerant taxon, Achnanthidium may thrive in low-light conditions created by FPV shading. It can also serve as a good water quality indicator, while baseline studies are needed to assess whether its dominance on FPVs reflects positive conditions for gravel pit lakes. By creating novel artificial habitats in the pelagic zone, FPVs can modify the patterns of primary production and pelagic-benthic coupling that remain to be investigated.
Knowledge and Manage... arrow_drop_down Knowledge and Management of Aquatic EcosystemsArticle . 2025 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/kmae/2025006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Knowledge and Manage... arrow_drop_down Knowledge and Management of Aquatic EcosystemsArticle . 2025 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/kmae/2025006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 France, United Kingdom, FrancePublisher:Elsevier BV Funded by:EC | ECLIPSE, FCT | LA 1EC| ECLIPSE ,FCT| LA 1Nobre, Regina; Rocha, Sofia Midaur; Healing, Samuel; Ji, Qianfeng; Boulêtreau, Stéphanie; Armstrong, Alona; Cucherousset, Julien;Floating Photovoltaic (FPV) deployments are accelerating worldwide and FPV coverage on water surface can strongly influence their ecological impacts. Yet, a global assessment of their characteristics is still lacking. We identified 643 FPV power plants constructed across the globe. We found that FPV power plants currently exist in 28 countries, predominantly concentrated in Asia. FPV coverage was highly variable between lakes, ranging from 0.004% to 89.9% of lake surface area. Overall, FPV coverage averaged 34.2% (± 22 SD, n=494), varying significantly across continents. FPV coverage was significantly driven by lake size and morphological complexity, with smaller lakes and lakes with simplified morphology having higher FPV coverage. The high variability in FPV coverage worldwide suggests a high context-dependency of their ecological impacts that will likely be stronger in small lakes with higher FPV coverage.
Lancaster EPrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Regina Nobre; Stéphanie Boulêtreau; Julien Cucherousset;pmid: 35821421
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-022-01891-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-022-01891-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Ignasi Arranz; Gaël Grenouillet; Julien Cucherousset;pmid: 37264200
Climate warming can negatively affect the body size of ectothermic organisms and, based on known temperature-size rules, tends to benefit small-bodied organisms. Our understanding of the interactive effects of climate warming and other environmental factors on the temporal changes of body size structure is limited. We quantified the annual trends in size spectra of 583 stream fish communities sampled for more than 20 years across France. The results show that climate warming steepened the slope of the community size spectrum in streams with limited impacts from other human pressures. These changes were caused by increasing abundance of small-bodied individuals and decreasing abundance of large-bodied individuals. However, opposite effects of climate warming on the size spectrum slopes were observed in streams facing high levels of other human pressures. This demonstrates that the effects of temperature on body size structure can depend on other human pressures, disrupting the natural patterns of size spectra in wild communities with potentially strong implications for the fluxes of energy and nutrients in ecosystems.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02083-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-023-02083-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:The Royal Society Funded by:ANR | FRADISYN, ANR | UNITI, EC | ECOFEEDANR| FRADISYN ,ANR| UNITI ,EC| ECOFEEDAimeric Teyssier; Aimeric Teyssier; Staffan Jacob; Lucie Zinger; Lisa Fourtune; Joël White; Lucie Di Gesu; Andrea Soriano-Redondo; Julien Cucherousset; Julien Cote; Elvire Bestion; Elvire Bestion;Species interactions are central in predicting the impairment of biodiversity with climate change. Trophic interactions may be altered through climate-dependent changes in either predator food preferences or prey communities. Yet, climate change impacts on predator diet remain surprisingly poorly understood. We experimentally studied the consequences of 2°C warmer climatic conditions on the trophic niche of a generalist lizard predator. We used a system of semi-natural mesocosms housing a variety of invertebrate species and in which climatic conditions were manipulated. Lizards in warmer climatic conditions ate at a greater predatory to phytophagous invertebrate ratio and had smaller individual dietary breadths. These shifts mainly arose from direct impacts of climate on lizard diets rather than from changes in prey communities. Dietary changes were associated with negative changes in fitness-related traits (body condition, gut microbiota) and survival. We demonstrate that climate change alters trophic interactions through top-predator dietary shifts, which might disrupt eco-evolutionary dynamics.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02340138Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02340138Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: Royal Society Data Sharing and AccessibilityData sources: SygmaProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphProceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2227&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FrancePublisher:Elsevier BV Nobre, Regina; Boulêtreau, Stéphanie; Colas, Fanny; Azémar, Frédéric; Tudesque, Loïc; Parthuisot, Nathalie; Fraviou, Pierre; Cucherousset, Julien;The need to mitigate the effects of climate change is accelerating the development of novel technologies such as floating photovoltaics (FPV). Despite FPV being identified as an emerging issue of concern for biodiversity conservation, it is fast spreading globally and our understanding of their potential ecological impacts is limited. We present an overview of the current knowledge and provide an ecological perspective on FPV potential impacts on lake biodiversity and ecosystem functioning. To date, published works have highlighted reductions in light arrival, wind speed and water temperature with increased FPV cover but the subsequent cascading effects on biological and ecological processes remain unknown. We suggest that modifications in light and water temperature can alter individual regulatory processes affecting, primary production and energy transfer within lake food webs. Additionally, FPV can modify the thermal functioning and oxygenation of the water column while providing artificial habitats for organisms. These modifications can affect individual behavior and life-story but also alter the composition of plant and animal communities, trophic interactions and greenhouse gas balances. We suggest that FPV can also modify socioecological activities related to lake use (e.g., angling, leisure) and pressures at the meta-ecosystem level. Overall, we argue that FPV impacts will be highly context-dependent, varying across ranges of environmental conditions and industrial characteristics (e.g., FPV cover and location). Given the ecological and socio-economic implications of FPV, empirical quantifications based on robust designs are urgently needed and we provide here a unique guideline to help developing research programs to monitor these potential impacts.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04264272Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04264272Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu