- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Denmark, Germany, Australia, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran..., ARC | ARC Future Fellowships - ...ARC| Linkage Projects - Grant ID: LP170101143 ,ARC| Discovery Projects - Grant ID: DP170100609 ,ARC| ARC Future Fellowships - Grant ID: FT190100234Andrew Skowno; Martine Maron; Cara R. Nelson; Cara R. Nelson; Samantha L. L. Hill; Emily Nicholson; Emily Nicholson; Nicholas J. Murray; Neil D. Burgess; Neil D. Burgess; David Obura; Angela Andrade; James E. M. Watson; David A. Keith; David A. Keith; David A. Keith; Jessica A. Rowland; Simone L. Stevenson; Kate E. Watermeyer; Andy Plumptre; Thomas M. Brooks; Thomas M. Brooks; Thomas M. Brooks; Daniel Metzke; Su-Ting Cheng; Hedley S. Grantham; Chloe F. Sato;pmid: 34400825
Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets-the actions that are necessary for the goals to be met-should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01538-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01538-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, ItalyPublisher:Wiley Funded by:EC | PROTECTNICHEEC| PROTECTNICHEChris Ware; Simon Ferrier; Moreno Di Marco; Moreno Di Marco; Tom Harwood; Samantha L. L. Hill; Samantha L. L. Hill; Andrew J. Hoskins;AbstractNations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, we present a fine‐resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to >52 million records of >254 thousand plant species, with the species–area relationship, to estimate the effect of land‐use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land‐use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio‐economic development can potentially bring extinction risk back to pre‐2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land‐use change. In this case, the estimated number of species committed to extinction increases by 3.7–4.5 times compared to land‐use‐only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land‐use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre‐industrial times is observed.
Archivio della ricer... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, Netherlands, United Kingdom, Netherlands, Italy, Netherlands, Netherlands, France, Netherlands, Netherlands, United Kingdom, France, NetherlandsPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | German Centre for Integra..., FCT | LA 1DFG| German Centre for Integrative Biodiversity Research - iDiv ,FCT| LA 1Henrique M. Pereira; Inês S. Martins; Isabel M. D. Rosa; HyeJin Kim; Paul Leadley; Alexander Popp; Detlef P. van Vuuren; George Hurtt; Luise Quoss; Almut Arneth; Daniele Baisero; Michel Bakkenes; Rebecca Chaplin-Kramer; Louise Chini; Moreno Di Marco; Simon Ferrier; Shinichiro Fujimori; Carlos A. Guerra; Michael Harfoot; Thomas D. Harwood; Tomoko Hasegawa; Vanessa Haverd; Petr Havlík; Stefanie Hellweg; Jelle P. Hilbers; Samantha L. L. Hill; Akiko Hirata; Andrew J. Hoskins; Florian Humpenöder; Jan H. Janse; Walter Jetz; Justin A. Johnson; Andreas Krause; David Leclère; Tetsuya Matsui; Johan R. Meijer; Cory Merow; Michael Obersteiner; Haruka Ohashi; Adriana De Palma; Benjamin Poulter; Andy Purvis; Benjamin Quesada; Carlo Rondinini; Aafke M. Schipper; Josef Settele; Richard Sharp; Elke Stehfest; Bernardo B. N. Strassburg; Kiyoshi Takahashi; Matthew V. Talluto; Wilfried Thuiller; Nicolas Titeux; Piero Visconti; Christopher Ware; Florian Wolf; Rob Alkemade;Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.
Science arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn3441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Science arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn3441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Denmark, Germany, Australia, Australia, AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran..., ARC | ARC Future Fellowships - ...ARC| Linkage Projects - Grant ID: LP170101143 ,ARC| Discovery Projects - Grant ID: DP170100609 ,ARC| ARC Future Fellowships - Grant ID: FT190100234Andrew Skowno; Martine Maron; Cara R. Nelson; Cara R. Nelson; Samantha L. L. Hill; Emily Nicholson; Emily Nicholson; Nicholas J. Murray; Neil D. Burgess; Neil D. Burgess; David Obura; Angela Andrade; James E. M. Watson; David A. Keith; David A. Keith; David A. Keith; Jessica A. Rowland; Simone L. Stevenson; Kate E. Watermeyer; Andy Plumptre; Thomas M. Brooks; Thomas M. Brooks; Thomas M. Brooks; Daniel Metzke; Su-Ting Cheng; Hedley S. Grantham; Chloe F. Sato;pmid: 34400825
Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets-the actions that are necessary for the goals to be met-should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01538-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-021-01538-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Australia, ItalyPublisher:Wiley Funded by:EC | PROTECTNICHEEC| PROTECTNICHEChris Ware; Simon Ferrier; Moreno Di Marco; Moreno Di Marco; Tom Harwood; Samantha L. L. Hill; Samantha L. L. Hill; Andrew J. Hoskins;AbstractNations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, we present a fine‐resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to >52 million records of >254 thousand plant species, with the species–area relationship, to estimate the effect of land‐use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land‐use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio‐economic development can potentially bring extinction risk back to pre‐2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land‐use change. In this case, the estimated number of species committed to extinction increases by 3.7–4.5 times compared to land‐use‐only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land‐use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre‐industrial times is observed.
Archivio della ricer... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14663&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Germany, Netherlands, United Kingdom, Netherlands, Italy, Netherlands, Netherlands, France, Netherlands, Netherlands, United Kingdom, France, NetherlandsPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | German Centre for Integra..., FCT | LA 1DFG| German Centre for Integrative Biodiversity Research - iDiv ,FCT| LA 1Henrique M. Pereira; Inês S. Martins; Isabel M. D. Rosa; HyeJin Kim; Paul Leadley; Alexander Popp; Detlef P. van Vuuren; George Hurtt; Luise Quoss; Almut Arneth; Daniele Baisero; Michel Bakkenes; Rebecca Chaplin-Kramer; Louise Chini; Moreno Di Marco; Simon Ferrier; Shinichiro Fujimori; Carlos A. Guerra; Michael Harfoot; Thomas D. Harwood; Tomoko Hasegawa; Vanessa Haverd; Petr Havlík; Stefanie Hellweg; Jelle P. Hilbers; Samantha L. L. Hill; Akiko Hirata; Andrew J. Hoskins; Florian Humpenöder; Jan H. Janse; Walter Jetz; Justin A. Johnson; Andreas Krause; David Leclère; Tetsuya Matsui; Johan R. Meijer; Cory Merow; Michael Obersteiner; Haruka Ohashi; Adriana De Palma; Benjamin Poulter; Andy Purvis; Benjamin Quesada; Carlo Rondinini; Aafke M. Schipper; Josef Settele; Richard Sharp; Elke Stehfest; Bernardo B. N. Strassburg; Kiyoshi Takahashi; Matthew V. Talluto; Wilfried Thuiller; Nicolas Titeux; Piero Visconti; Christopher Ware; Florian Wolf; Rob Alkemade;Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.
Science arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn3441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 64 citations 64 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert Science arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn3441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu