- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:IOP Publishing Authors: A M Ukkola; M L Roderick; A Barker; A J Pitman;handle: 1885/214085
Abstract Australia has experienced regional climate trends over recent decades with consequences for agriculture and water management. We investigate the statistical significance of these trends at annual and seasonal scales using the concept of stationarity. Using long-term high quality regional-scale observations of temperature, precipitation and pan evaporation (a measure of atmospheric evaporative demand), we find that despite highly significant increases in temperature that are non-stationary, few regions of Australia have experienced annual or seasonal changes in precipitation or pan evaporation that are outside the range of observed variability over the last century. Despite a common assumption of increasing water demand under a warming climate, atmospheric evaporative demand (as measured by pan evaporation) largely remains unchanged. This is because evaporative demand depends strongly on factors other than temperature. Similarly, seasonal and annual precipitation over the last century is found to be stationary in most (but not all) regions. These findings suggest that the Australian precipitation has largely remained within the bounds of observed variability to date and emphasises the need to better account for variability in water resource management.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab545c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab545c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Springer Science and Business Media LLC Green, D; Pitman, A; Barnett, A; Kaldor, J; Doherty, P; Stanley, F;doi: 10.1038/nclimate3182
handle: 1959.4/unsworks_43981
Australia allocates less than 0.1% of health funding to research on health and climate change. This Perspective highlights the country's strength in the individual disciplines of climate science and health research and calls for bringing these areas together. A major Australian government report published 25 years ago called for urgent investment in research on the impacts of climate change on human health. Since that report's release, less than 0.1% of Australian health funding has been allocated to this area. As the world continues on a high emissions pathway, the health impacts from climate change are increasing in size and complexity. While Australia has established leadership roles in climate science and health research, it must now link these two strengths. Doing so would boost regional understanding of how climate change will affect health and what adaptation strategies are needed to reduce these threats. Such research would support better health planning and decision-making in partnership with other regional countries.
UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_43981Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_43981Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:IOP Publishing Mathew Lipson; Mathew Lipson; Melissa Hart; Andrew J. Pitman; Marcus Thatcher;Abstract Social, technological and climatic changes will transform the way energy is consumed over the 21st century, with important implications for energy networks and greenhouse gas emissions. Here, we develop a method to efficiently explore climate-energy interactions under various scenarios of climate, urban infrastructure and technological change. We couple the Urban Climate and Energy Model with the Conformal Cubic Atmospheric Model as a full-height single column driven with a series of global climate model simulations in an ensemble approach. The framework is evaluated against observations, then a series of century-scale simulations are undertaken to examine projected climate change impacts on electricity and gas demand in the temperate/ oceanic climate of Melbourne, Australia. With air-conditioning ownership remaining at early 21st century levels, and in the absence of other changes, climate change under radiative forcing RCP 8.5 increases peak electricity demand by 10%, and decreases peak gas demand by 22% between 2000 and 2100. However, if projected increases in air-conditioning ownership are considered, peak electricity demand increases by 84%, surpassing peak gas demand in the second half of the century. These findings highlight the complex nature of changes facing energy networks. Changes will be location and scenario dependent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab5aa5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab5aa5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:American Geophysical Union (AGU) Funded by:ARC | Discovery Early Career Re..., EC | DROUGHT-HEATARC| Discovery Early Career Researcher Award - Grant ID: DE150100456 ,EC| DROUGHT-HEATAuthors: M. G. Donat; A. J. Pitman; S. I. Seneviratne;doi: 10.1002/2017gl073733
handle: 1959.4/unsworks_58587
AbstractStrong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hot spots of accelerated warming of model‐simulated hot extremes in Europe, North America, South America, and Southeast China. These hot spots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most Coupled Model Intercomparison Project Phase 5 models. Exploring the conditions on the specific day when the hot extreme occurs demonstrates that the hot spots are explained by changes in the surface energy fluxes consistent with drying soils. However, the model‐simulated accelerated warming of hot extremes appears inconsistent with observations, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a reevaluation of how climate models resolve the relevant terrestrial processes.
UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_58587Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/2017...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl073733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_58587Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/2017...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl073733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 AustraliaPublisher:Public Library of Science (PLoS) Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT110100576Argüeso, D; Evans, JP; Pitman, AJ; Luca, AD; Di Luca, Alejandro; Argüeso Barriga, Daniel;We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009) and future (2040-2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.
UNSWorks arrow_drop_down UNSWorksArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_36120Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0117066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_36120Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0117066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT110100576Hamish Clarke; Hamish Clarke; Hamish Clarke; C. Carouge; Vanessa Haverd; Jason P. Evans; Jatin Kala; Andrew J. Pitman;We present an assessment of the impact of future climate change on two key drivers of fire risk in Australia, fire weather and fuel load. Fire weather conditions are represented by the McArthur Forest Fire Danger Index (FFDI), calculated from a 12-member regional climate model ensemble. Fuel load is predicted from net primary production, simulated using a land surface model forced by the same regional climate model ensemble. Mean annual fine litter is projected to increase across all ensemble members, by 1.2 to 1.7 t ha−1 in temperate areas, 0.3 to 0.5 t ha−1 in grassland areas and 0.7 to 1.1 t ha−1 in subtropical areas. Ensemble changes in annual cumulative FFDI vary widely, from 57 to 550 in temperate areas, −186 to 1372 in grassland areas and −231 to 907 in subtropical areas. These results suggest that uncertainty in FFDI projections will be underestimated if only a single driving model is used. The largest increases in fuel load and fire weather are projected to occur in spring. Deriving fuel load from a land surface model may be possible in other regions, when this information is not directly available from climate model outputs.
Climatic Change arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-016-1808-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climatic Change arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-016-1808-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, United Kingdom, United KingdomPublisher:Wiley Funded by:ARC | ARC Centres of Excellence..., ARC | Discovery Projects - Gran...ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Projects - Grant ID: DP190101823Martin G. De Kauwe; Peter R. Briggs; Chris J. Blackman; Sami W. Rifai; Ximeng Li; Patrick Meir; Patrick Meir; Michael L. Roderick; Belinda E. Medlyn; Manon Sabot; Mengyuan Mu; Brendan Choat; Lucas A. Cernusak; Anna M. Ukkola; David T. Tissue; Andrew J. Pitman;doi: 10.1111/gcb.15215
pmid: 32512628
AbstractSouth‐East Australia has recently been subjected to two of the worst droughts in the historical record (Millennium Drought, 2000–2009 and Big Dry, 2017–2019). Unfortunately, a lack of forest monitoring has made it difficult to determine whether widespread tree mortality has resulted from these droughts. Anecdotal observations suggest the Big Dry may have led to more significant tree mortality than the Millennium drought. Critically, to be able to robustly project future expected climate change effects on Australian vegetation, we need to assess the vulnerability of Australian trees to drought. Here we implemented a model of plant hydraulics into the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model. We parameterized the drought response behaviour of five broad vegetation types, based on a common garden dry‐down experiment with species originating across a rainfall gradient (188–1,125 mm/year) across South‐East Australia. The new hydraulics model significantly improved (~35%–45% reduction in root mean square error) CABLE’s previous predictions of latent heat fluxes during periods of water stress at two eddy covariance sites in Australia. Landscape‐scale predictions of the greatest percentage loss of hydraulic conductivity (PLC) of about 40%–60%, were broadly consistent with satellite estimates of regions of the greatest change in both droughts. In neither drought did CABLE predict that trees would have reached critical PLC in widespread areas (i.e. it projected a low mortality risk), although the model highlighted critical levels near the desert regions of South‐East Australia where few trees live. Overall, our experimentally constrained model results imply significant resilience to drought conferred by hydraulic function, but also highlight critical data and scientific gaps. Our approach presents a promising avenue to integrate experimental data and make regional‐scale predictions of potential drought‐induced hydraulic failure.
Australian National ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United KingdomPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | ARC Centres of Excellence..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE200100086 ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Projects - Grant ID: DP190102025 ,ARC| Discovery Projects - Grant ID: DP190101823Michael L. Roderick; Martin G. De Kauwe; Andrew J. Pitman; Peter Lehmann; Arden Burrell; Anna M. Ukkola; Anna M. Ukkola;doi: 10.1111/gcb.15729
pmid: 34091984
AbstractDryland vegetation productivity is strongly modulated by water availability. As precipitation patterns and variability are altered by climate change, there is a pressing need to better understand vegetation responses to precipitation variability in these ecologically fragile regions. Here we present a global analysis of dryland sensitivity to annual precipitation variations using long‐term records of normalized difference vegetation index (NDVI). We show that while precipitation explains 66% of spatial gradients in NDVI across dryland regions, precipitation only accounts for <26% of temporal NDVI variability over most (>75%) dryland regions. We observed this weaker temporal relative to spatial relationship between NDVI and precipitation across all global drylands. We confirmed this result using three alternative water availability metrics that account for water loss to evaporation, and growing season and precipitation timing. This suggests that predicting vegetation responses to future rainfall using space‐for‐time substitution will strongly overestimate precipitation control on interannual variability in aboveground growth. We explore multiple mechanisms to explain the discrepancy between spatial and temporal responses and find contributions from multiple factors including local‐scale vegetation characteristics, climate and soil properties. Earth system models (ESMs) from the latest Coupled Model Intercomparison Project overestimate the observed vegetation sensitivity to precipitation variability up to threefold, particularly during dry years. Given projections of increasing meteorological drought, ESMs are likely to overestimate the impacts of future drought on dryland vegetation with observations suggesting that dryland vegetation is more resistant to annual precipitation variations than ESMs project.
UNSWorks arrow_drop_down UNSWorksArticle . 2021Full-Text: http://hdl.handle.net/1959.4/103833Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2021Full-Text: http://hdl.handle.net/1959.4/103833Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 AustraliaPublisher:MDPI AG Funded by:NHMRC | Health impacts of climate...NHMRC| Health impacts of climate change on Indigenous Australians: identifying climate thresholds to enable the development of informed adaptation strategiesGreen, D; Bambrick, H; Tait, P; Goldie, J; Schultz, R; Webb, L; Alexander, L; Pitman, A;The health gap between Indigenous and non-Indigenous Australians may be exacerbated by climate change if temperature extremes have disproportionate adverse effects on Indigenous people. To explore this issue, we analysed the effect of temperature extremes on hospital admissions for respiratory diseases, stratified by age, Indigenous status and sex, for people living in two different climates zones in the Northern Territory during the period 1993–2011. We examined admissions for both acute and chronic respiratory diagnoses, controlling for day of the week and seasonality variables. Our analysis showed that: (1) overall, Indigenous hospital admission rates far exceeded non-Indigenous admission rates for acute and chronic diagnoses, and Top End climate zone admission rates exceeded Central Australia climate zone admission rates; (2) extreme cold and hot temperatures were associated with inconsistent changes in admission rates for acute respiratory disease in Indigenous and non-Indigenous children and older adults; and (3) no response to cold or hot temperature extremes was found for chronic respiratory diagnoses. These findings support our two hypotheses, that extreme hot and cold temperatures have a different effect on hospitalisations for respiratory disease between Indigenous and non-Indigenous people, and that these health risks vary between the different climate zones. We did not, however, find that there were differing responses to temperature extremes in the two populations, suggesting that any increased vulnerability to climate change in the Indigenous population of the Northern Territory arises from an increased underlying risk to respiratory disease and an already greater existing health burden.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2015License: CC BYData sources: Multidisciplinary Digital Publishing InstituteUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_37067Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Environmental Research and Public HealthArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph121214988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2015License: CC BYData sources: Multidisciplinary Digital Publishing InstituteUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_37067Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Environmental Research and Public HealthArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph121214988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:IWA Publishing Jason P. Evans; Andrew J. Pitman; Luther Uthayakumaran; Adrian Barker; Frank Spaninks;doi: 10.2166/wcc.2020.230
AbstractWe examine the relative impact of population increases and climate change in affecting future water demand for Sydney, Australia. We use the Weather and Research Forecasting model, a water demand model and a stochastic weather generator to downscale four different global climate models for the present (1990–2010), near (2020–2040) and far (2060–2080) future. Projected climate change would increase median metered consumption, at 2019/2020 population levels, from around 484 GL under present climate to 484–494 GL under near future climate and 495–505 GL under far future climate. Population changes from 2014/2015 to 2024/2025 have a far larger impact, increasing median metered consumption from 457 to 508 GL under the present climate, 463 to 515 GL under near future climate and from 471 to 524 GL under far future climate. The projected changes in consumption are sensitive to the climate model used. Overall, while population growth is a far stronger driver of increasing water demand than climate change for Sydney, both act in parallel to reduce the time it would take for all storage to be exhausted. Failing to account for climate change would therefore lead to overconfidence in the reliability of Sydney's water supply.
Journal of Water and... arrow_drop_down Journal of Water and Climate ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wcc.2020.230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Water and... arrow_drop_down Journal of Water and Climate ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wcc.2020.230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:IOP Publishing Authors: A M Ukkola; M L Roderick; A Barker; A J Pitman;handle: 1885/214085
Abstract Australia has experienced regional climate trends over recent decades with consequences for agriculture and water management. We investigate the statistical significance of these trends at annual and seasonal scales using the concept of stationarity. Using long-term high quality regional-scale observations of temperature, precipitation and pan evaporation (a measure of atmospheric evaporative demand), we find that despite highly significant increases in temperature that are non-stationary, few regions of Australia have experienced annual or seasonal changes in precipitation or pan evaporation that are outside the range of observed variability over the last century. Despite a common assumption of increasing water demand under a warming climate, atmospheric evaporative demand (as measured by pan evaporation) largely remains unchanged. This is because evaporative demand depends strongly on factors other than temperature. Similarly, seasonal and annual precipitation over the last century is found to be stationary in most (but not all) regions. These findings suggest that the Australian precipitation has largely remained within the bounds of observed variability to date and emphasises the need to better account for variability in water resource management.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab545c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab545c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Springer Science and Business Media LLC Green, D; Pitman, A; Barnett, A; Kaldor, J; Doherty, P; Stanley, F;doi: 10.1038/nclimate3182
handle: 1959.4/unsworks_43981
Australia allocates less than 0.1% of health funding to research on health and climate change. This Perspective highlights the country's strength in the individual disciplines of climate science and health research and calls for bringing these areas together. A major Australian government report published 25 years ago called for urgent investment in research on the impacts of climate change on human health. Since that report's release, less than 0.1% of Australian health funding has been allocated to this area. As the world continues on a high emissions pathway, the health impacts from climate change are increasing in size and complexity. While Australia has established leadership roles in climate science and health research, it must now link these two strengths. Doing so would boost regional understanding of how climate change will affect health and what adaptation strategies are needed to reduce these threats. Such research would support better health planning and decision-making in partnership with other regional countries.
UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_43981Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_43981Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate3182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:IOP Publishing Mathew Lipson; Mathew Lipson; Melissa Hart; Andrew J. Pitman; Marcus Thatcher;Abstract Social, technological and climatic changes will transform the way energy is consumed over the 21st century, with important implications for energy networks and greenhouse gas emissions. Here, we develop a method to efficiently explore climate-energy interactions under various scenarios of climate, urban infrastructure and technological change. We couple the Urban Climate and Energy Model with the Conformal Cubic Atmospheric Model as a full-height single column driven with a series of global climate model simulations in an ensemble approach. The framework is evaluated against observations, then a series of century-scale simulations are undertaken to examine projected climate change impacts on electricity and gas demand in the temperate/ oceanic climate of Melbourne, Australia. With air-conditioning ownership remaining at early 21st century levels, and in the absence of other changes, climate change under radiative forcing RCP 8.5 increases peak electricity demand by 10%, and decreases peak gas demand by 22% between 2000 and 2100. However, if projected increases in air-conditioning ownership are considered, peak electricity demand increases by 84%, surpassing peak gas demand in the second half of the century. These findings highlight the complex nature of changes facing energy networks. Changes will be location and scenario dependent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab5aa5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab5aa5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:American Geophysical Union (AGU) Funded by:ARC | Discovery Early Career Re..., EC | DROUGHT-HEATARC| Discovery Early Career Researcher Award - Grant ID: DE150100456 ,EC| DROUGHT-HEATAuthors: M. G. Donat; A. J. Pitman; S. I. Seneviratne;doi: 10.1002/2017gl073733
handle: 1959.4/unsworks_58587
AbstractStrong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hot spots of accelerated warming of model‐simulated hot extremes in Europe, North America, South America, and Southeast China. These hot spots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most Coupled Model Intercomparison Project Phase 5 models. Exploring the conditions on the specific day when the hot extreme occurs demonstrates that the hot spots are explained by changes in the surface energy fluxes consistent with drying soils. However, the model‐simulated accelerated warming of hot extremes appears inconsistent with observations, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a reevaluation of how climate models resolve the relevant terrestrial processes.
UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_58587Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/2017...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl073733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_58587Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1002/2017...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017gl073733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 AustraliaPublisher:Public Library of Science (PLoS) Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT110100576Argüeso, D; Evans, JP; Pitman, AJ; Luca, AD; Di Luca, Alejandro; Argüeso Barriga, Daniel;We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009) and future (2040-2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.
UNSWorks arrow_drop_down UNSWorksArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_36120Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0117066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_36120Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0117066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT110100576Hamish Clarke; Hamish Clarke; Hamish Clarke; C. Carouge; Vanessa Haverd; Jason P. Evans; Jatin Kala; Andrew J. Pitman;We present an assessment of the impact of future climate change on two key drivers of fire risk in Australia, fire weather and fuel load. Fire weather conditions are represented by the McArthur Forest Fire Danger Index (FFDI), calculated from a 12-member regional climate model ensemble. Fuel load is predicted from net primary production, simulated using a land surface model forced by the same regional climate model ensemble. Mean annual fine litter is projected to increase across all ensemble members, by 1.2 to 1.7 t ha−1 in temperate areas, 0.3 to 0.5 t ha−1 in grassland areas and 0.7 to 1.1 t ha−1 in subtropical areas. Ensemble changes in annual cumulative FFDI vary widely, from 57 to 550 in temperate areas, −186 to 1372 in grassland areas and −231 to 907 in subtropical areas. These results suggest that uncertainty in FFDI projections will be underestimated if only a single driving model is used. The largest increases in fuel load and fire weather are projected to occur in spring. Deriving fuel load from a land surface model may be possible in other regions, when this information is not directly available from climate model outputs.
Climatic Change arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-016-1808-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climatic Change arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-016-1808-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Australia, United Kingdom, United KingdomPublisher:Wiley Funded by:ARC | ARC Centres of Excellence..., ARC | Discovery Projects - Gran...ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Projects - Grant ID: DP190101823Martin G. De Kauwe; Peter R. Briggs; Chris J. Blackman; Sami W. Rifai; Ximeng Li; Patrick Meir; Patrick Meir; Michael L. Roderick; Belinda E. Medlyn; Manon Sabot; Mengyuan Mu; Brendan Choat; Lucas A. Cernusak; Anna M. Ukkola; David T. Tissue; Andrew J. Pitman;doi: 10.1111/gcb.15215
pmid: 32512628
AbstractSouth‐East Australia has recently been subjected to two of the worst droughts in the historical record (Millennium Drought, 2000–2009 and Big Dry, 2017–2019). Unfortunately, a lack of forest monitoring has made it difficult to determine whether widespread tree mortality has resulted from these droughts. Anecdotal observations suggest the Big Dry may have led to more significant tree mortality than the Millennium drought. Critically, to be able to robustly project future expected climate change effects on Australian vegetation, we need to assess the vulnerability of Australian trees to drought. Here we implemented a model of plant hydraulics into the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model. We parameterized the drought response behaviour of five broad vegetation types, based on a common garden dry‐down experiment with species originating across a rainfall gradient (188–1,125 mm/year) across South‐East Australia. The new hydraulics model significantly improved (~35%–45% reduction in root mean square error) CABLE’s previous predictions of latent heat fluxes during periods of water stress at two eddy covariance sites in Australia. Landscape‐scale predictions of the greatest percentage loss of hydraulic conductivity (PLC) of about 40%–60%, were broadly consistent with satellite estimates of regions of the greatest change in both droughts. In neither drought did CABLE predict that trees would have reached critical PLC in widespread areas (i.e. it projected a low mortality risk), although the model highlighted critical levels near the desert regions of South‐East Australia where few trees live. Overall, our experimentally constrained model results imply significant resilience to drought conferred by hydraulic function, but also highlight critical data and scientific gaps. Our approach presents a promising avenue to integrate experimental data and make regional‐scale predictions of potential drought‐induced hydraulic failure.
Australian National ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United KingdomPublisher:Wiley Funded by:ARC | Discovery Early Career Re..., ARC | ARC Centres of Excellence..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE200100086 ,ARC| ARC Centres of Excellences - Grant ID: CE170100023 ,ARC| Discovery Projects - Grant ID: DP190102025 ,ARC| Discovery Projects - Grant ID: DP190101823Michael L. Roderick; Martin G. De Kauwe; Andrew J. Pitman; Peter Lehmann; Arden Burrell; Anna M. Ukkola; Anna M. Ukkola;doi: 10.1111/gcb.15729
pmid: 34091984
AbstractDryland vegetation productivity is strongly modulated by water availability. As precipitation patterns and variability are altered by climate change, there is a pressing need to better understand vegetation responses to precipitation variability in these ecologically fragile regions. Here we present a global analysis of dryland sensitivity to annual precipitation variations using long‐term records of normalized difference vegetation index (NDVI). We show that while precipitation explains 66% of spatial gradients in NDVI across dryland regions, precipitation only accounts for <26% of temporal NDVI variability over most (>75%) dryland regions. We observed this weaker temporal relative to spatial relationship between NDVI and precipitation across all global drylands. We confirmed this result using three alternative water availability metrics that account for water loss to evaporation, and growing season and precipitation timing. This suggests that predicting vegetation responses to future rainfall using space‐for‐time substitution will strongly overestimate precipitation control on interannual variability in aboveground growth. We explore multiple mechanisms to explain the discrepancy between spatial and temporal responses and find contributions from multiple factors including local‐scale vegetation characteristics, climate and soil properties. Earth system models (ESMs) from the latest Coupled Model Intercomparison Project overestimate the observed vegetation sensitivity to precipitation variability up to threefold, particularly during dry years. Given projections of increasing meteorological drought, ESMs are likely to overestimate the impacts of future drought on dryland vegetation with observations suggesting that dryland vegetation is more resistant to annual precipitation variations than ESMs project.
UNSWorks arrow_drop_down UNSWorksArticle . 2021Full-Text: http://hdl.handle.net/1959.4/103833Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2021Full-Text: http://hdl.handle.net/1959.4/103833Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 AustraliaPublisher:MDPI AG Funded by:NHMRC | Health impacts of climate...NHMRC| Health impacts of climate change on Indigenous Australians: identifying climate thresholds to enable the development of informed adaptation strategiesGreen, D; Bambrick, H; Tait, P; Goldie, J; Schultz, R; Webb, L; Alexander, L; Pitman, A;The health gap between Indigenous and non-Indigenous Australians may be exacerbated by climate change if temperature extremes have disproportionate adverse effects on Indigenous people. To explore this issue, we analysed the effect of temperature extremes on hospital admissions for respiratory diseases, stratified by age, Indigenous status and sex, for people living in two different climates zones in the Northern Territory during the period 1993–2011. We examined admissions for both acute and chronic respiratory diagnoses, controlling for day of the week and seasonality variables. Our analysis showed that: (1) overall, Indigenous hospital admission rates far exceeded non-Indigenous admission rates for acute and chronic diagnoses, and Top End climate zone admission rates exceeded Central Australia climate zone admission rates; (2) extreme cold and hot temperatures were associated with inconsistent changes in admission rates for acute respiratory disease in Indigenous and non-Indigenous children and older adults; and (3) no response to cold or hot temperature extremes was found for chronic respiratory diagnoses. These findings support our two hypotheses, that extreme hot and cold temperatures have a different effect on hospitalisations for respiratory disease between Indigenous and non-Indigenous people, and that these health risks vary between the different climate zones. We did not, however, find that there were differing responses to temperature extremes in the two populations, suggesting that any increased vulnerability to climate change in the Indigenous population of the Northern Territory arises from an increased underlying risk to respiratory disease and an already greater existing health burden.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2015License: CC BYData sources: Multidisciplinary Digital Publishing InstituteUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_37067Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Environmental Research and Public HealthArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph121214988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2015License: CC BYData sources: Multidisciplinary Digital Publishing InstituteUniversity of Western Sydney (UWS): Research DirectArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_37067Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Environmental Research and Public HealthArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph121214988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:IWA Publishing Jason P. Evans; Andrew J. Pitman; Luther Uthayakumaran; Adrian Barker; Frank Spaninks;doi: 10.2166/wcc.2020.230
AbstractWe examine the relative impact of population increases and climate change in affecting future water demand for Sydney, Australia. We use the Weather and Research Forecasting model, a water demand model and a stochastic weather generator to downscale four different global climate models for the present (1990–2010), near (2020–2040) and far (2060–2080) future. Projected climate change would increase median metered consumption, at 2019/2020 population levels, from around 484 GL under present climate to 484–494 GL under near future climate and 495–505 GL under far future climate. Population changes from 2014/2015 to 2024/2025 have a far larger impact, increasing median metered consumption from 457 to 508 GL under the present climate, 463 to 515 GL under near future climate and from 471 to 524 GL under far future climate. The projected changes in consumption are sensitive to the climate model used. Overall, while population growth is a far stronger driver of increasing water demand than climate change for Sydney, both act in parallel to reduce the time it would take for all storage to be exhausted. Failing to account for climate change would therefore lead to overconfidence in the reliability of Sydney's water supply.
Journal of Water and... arrow_drop_down Journal of Water and Climate ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wcc.2020.230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Water and... arrow_drop_down Journal of Water and Climate ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wcc.2020.230&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu