- home
- Advanced Search
Filters
Year range
-chevron_right GOOrganization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2021 FrancePublisher:Springer Science and Business Media LLC Authors: Ananias Francisco Dias Junior; Rosi Pompeu Esteves; Álison Moreira da Silva; Aécio Dantas Sousa Júnior; +4 AuthorsAnanias Francisco Dias Junior; Rosi Pompeu Esteves; Álison Moreira da Silva; Aécio Dantas Sousa Júnior; Michel Picanço Oliveira; José Otávio Brito; Alfredo Napoli; Benone Magalhães Braga;The production of charcoal for its many uses requires a careful selection of biomass and pyrolysis conditions, especially temperature, to ensure suitable quality. To do so, physical, chemical, and mechanical energy must be considered. This study aimed to analyze the yields and properties of charcoal produced at different pyrolysis temperatures. Eucalyptus saligna wood was pyrolyzed in a reactor with final temperatures of 450, 550, 650, 750, 850 and 950 °C. The yields of charcoal, pyroligneous liquid and non-condensable gases were determined. Mass loss was determined for each temperature. Charcoal analysis included the determination of the apparent density, proximate analysis, heating value, mechanical strength, X-ray images for the internal visualization of its structure and hygroscopicity test. Relevant charcoal properties for the steel industry and barbecue, such as density, mechanical strength, heating value and hygroscopicity, show variable trends from pyrolysis at 650 °C. The results show that pyrolysis temperature had a great impact on the properties of charcoal. The apparent density of charcoal rose from 500 °C and had no relation to the breaking strength. When the pyrolysis temperature was raised, an increase in both apparent and true densities, internal fissures and cracks and fixed carbon content of charcoal was observed.
Agritrop arrow_drop_down European Journal of Wood and Wood ProductsArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00107-019-01489-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down European Journal of Wood and Wood ProductsArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00107-019-01489-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2021 FrancePublisher:Springer Science and Business Media LLC Authors: Ananias Francisco Dias Junior; Rosi Pompeu Esteves; Álison Moreira da Silva; Aécio Dantas Sousa Júnior; +4 AuthorsAnanias Francisco Dias Junior; Rosi Pompeu Esteves; Álison Moreira da Silva; Aécio Dantas Sousa Júnior; Michel Picanço Oliveira; José Otávio Brito; Alfredo Napoli; Benone Magalhães Braga;The production of charcoal for its many uses requires a careful selection of biomass and pyrolysis conditions, especially temperature, to ensure suitable quality. To do so, physical, chemical, and mechanical energy must be considered. This study aimed to analyze the yields and properties of charcoal produced at different pyrolysis temperatures. Eucalyptus saligna wood was pyrolyzed in a reactor with final temperatures of 450, 550, 650, 750, 850 and 950 °C. The yields of charcoal, pyroligneous liquid and non-condensable gases were determined. Mass loss was determined for each temperature. Charcoal analysis included the determination of the apparent density, proximate analysis, heating value, mechanical strength, X-ray images for the internal visualization of its structure and hygroscopicity test. Relevant charcoal properties for the steel industry and barbecue, such as density, mechanical strength, heating value and hygroscopicity, show variable trends from pyrolysis at 650 °C. The results show that pyrolysis temperature had a great impact on the properties of charcoal. The apparent density of charcoal rose from 500 °C and had no relation to the breaking strength. When the pyrolysis temperature was raised, an increase in both apparent and true densities, internal fissures and cracks and fixed carbon content of charcoal was observed.
Agritrop arrow_drop_down European Journal of Wood and Wood ProductsArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00107-019-01489-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down European Journal of Wood and Wood ProductsArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00107-019-01489-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu