- home
- Advanced Search
- Energy Research
- 2. Zero hunger
- Energy Research
- 2. Zero hunger
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Sohaib Arshad; Mushtaq Ahmad; Abdul Saboor; Faridah Hanum Ibrahim; Muhammad Raza Ul Mustafa; Muhammad Zafar; Shomaila Ashfaq;doi: 10.1002/jemt.23106
pmid: 30511479
AbstractClimate change is the most realistic theory of this era. Sudden and drastic changes are happening on the earth and the survival of mankind is becoming questionable in the future. The plants play the key role in controlling the climate change. The study emphasizes on role of trees in the cop up or damaging the climate of this earth, whether they are medicinal trees or economically important trees. Due to the overgrazing and intense deforestation the climate is being affected hazardously. The global warming phenomenon is occurring due to the less availability of trees and more carbon dioxide in the atmosphere. In total 20 plants were collected from across the Pakistan on the basis of their abundance and their key roles. Out of which seeds of eight plants were scanned through scanning electron microscope for correct authentication and importance of these medicinally important trees in mitigating the climate change.Research Highlights The role of forest sector in the climate's change mitigation. Medicinally and economically important tree species across Pakistan. By using SEM, Ultra seed sculpturing features as an authentication tool. To formulate some policies to stop or control deforestation.
Microscopy Research ... arrow_drop_down Microscopy Research and TechniqueArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jemt.23106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Microscopy Research ... arrow_drop_down Microscopy Research and TechniqueArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jemt.23106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Fahad Rasheed; Adnan Gondal; Kamziah Abdul Kudus; Zikria Zafar; Muhammad Farrakh Nawaz; Waseem Razzaq Khan; Muhammad Abdullah; Faridah Hanum Ibrahim; Claire Depardieu; Ahmad Mustapha Mohamad Pazi; Khayyam Anjum; Shazia Afzal; Seemab Akram; Mohd Nazre;doi: 10.3390/su13063336
Low water availability predicted under climate change is a major abiotic factor limiting plants growth and productivity. In this study a greenhouse experiment was conducted on three important tree species of arid environment: Conocarpus erectus (CE), Acacia modesta (AM), and Salix tetrasperma (ST). Young saplings were subjected to control (C), medium (MWD) and severe soil water deficit (SWD) treatments and response was evaluated. Results showed that in all the three species leaf, stem and root dry weight production remained similar to C under MWD treatment but decreased significantly under SWD. The highest decrease in total dry weight was noticed in ST and the lowest was evidenced in AM under SWD. Root:shoot ratio increased significantly in both CE and AM under MWD and SWD. Furthermore, chlorophyll content decreased while proline content increased significantly in both MWD and SWD treatments. The production of oxidants (hydrogen peroxide and superoxide anions) and antioxidants (superoxide dismutase, catalase, peroxidase and ascorbate peroxidase) increased significantly under both MWD and SWD treatments and were the highest in AM in both MWD and SWD treatments. Therefore, we may conclude that all the three species can tolerate medium water stress due to increased root production and an effective antioxidant defense mechanism.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3336/pdfData sources: Multidisciplinary Digital Publishing InstituteGöttingen Research Online PublicationsArticle . 2021License: CC BYData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3336/pdfData sources: Multidisciplinary Digital Publishing InstituteGöttingen Research Online PublicationsArticle . 2021License: CC BYData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Rizwan Iqbal; Rizwan Iqbal; Volkan Altay; Naheed Saba; Munir Ozturk; Khalid Rehman Hakeem; Faridah Hanum Ibrahim; Mohammad Jawaid;Abstract Among renewable energy sources, the share of biomass in total energy consumption in Turkey is increasing. Fuelwood and animal waste biomass are extensively used for heating and cooking in urban and rural areas. It has been estimated that Turkey has recoverable energy potential mainly originating from agricultural, livestock breeding, wood and forest processing, and municipality wastes. Annual production of wastes in the country amounts to 30 million tons. Turkey also produces 1.5 million tons of biodiesel, 3 million tons of bioethanol and 2.5–4.0 billion m3 of biogas per year. In Turkey, total biomass production is expected to reach a level of 52.5 Mtoe by 2030. Malaysia produces annually approximately 168 million tons of biomass, including timber, oil palm waste, rice husks, coconut trunk fibers, municipal and sugarcane wastes. Every year, nearly 58 million tons of palm oil mill effluent are produced in Malaysia. It has been estimated that the country has the potential to generate around 15 billion m3 of biogas annually. Estimates also show that Malaysia can produce more than 2400 MW of biomass and 410 MW of biogas, however, only 773 MW of the total potential was harnessed until 2011. The National Biomass Strategy 2020 proposes a scenario according to which an additional 20 million tonnes of oil palm biomass could be utilized by the year 2020 for higher value uses, which could significantly contribute to improving Malaysia's economy. Both countries have good potential to use biomass resources, but political backing and sustainable planning are necessary. In this review article, we try to compare future energy scenarios, renewable energy and biomass potentials of Turkey and Malaysia, while providing an insight into data on different biomass availability and its probable contribution to both nations’ economies.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Sohaib Arshad; Mushtaq Ahmad; Abdul Saboor; Faridah Hanum Ibrahim; Muhammad Raza Ul Mustafa; Muhammad Zafar; Shomaila Ashfaq;doi: 10.1002/jemt.23106
pmid: 30511479
AbstractClimate change is the most realistic theory of this era. Sudden and drastic changes are happening on the earth and the survival of mankind is becoming questionable in the future. The plants play the key role in controlling the climate change. The study emphasizes on role of trees in the cop up or damaging the climate of this earth, whether they are medicinal trees or economically important trees. Due to the overgrazing and intense deforestation the climate is being affected hazardously. The global warming phenomenon is occurring due to the less availability of trees and more carbon dioxide in the atmosphere. In total 20 plants were collected from across the Pakistan on the basis of their abundance and their key roles. Out of which seeds of eight plants were scanned through scanning electron microscope for correct authentication and importance of these medicinally important trees in mitigating the climate change.Research Highlights The role of forest sector in the climate's change mitigation. Medicinally and economically important tree species across Pakistan. By using SEM, Ultra seed sculpturing features as an authentication tool. To formulate some policies to stop or control deforestation.
Microscopy Research ... arrow_drop_down Microscopy Research and TechniqueArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jemt.23106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Microscopy Research ... arrow_drop_down Microscopy Research and TechniqueArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jemt.23106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Fahad Rasheed; Adnan Gondal; Kamziah Abdul Kudus; Zikria Zafar; Muhammad Farrakh Nawaz; Waseem Razzaq Khan; Muhammad Abdullah; Faridah Hanum Ibrahim; Claire Depardieu; Ahmad Mustapha Mohamad Pazi; Khayyam Anjum; Shazia Afzal; Seemab Akram; Mohd Nazre;doi: 10.3390/su13063336
Low water availability predicted under climate change is a major abiotic factor limiting plants growth and productivity. In this study a greenhouse experiment was conducted on three important tree species of arid environment: Conocarpus erectus (CE), Acacia modesta (AM), and Salix tetrasperma (ST). Young saplings were subjected to control (C), medium (MWD) and severe soil water deficit (SWD) treatments and response was evaluated. Results showed that in all the three species leaf, stem and root dry weight production remained similar to C under MWD treatment but decreased significantly under SWD. The highest decrease in total dry weight was noticed in ST and the lowest was evidenced in AM under SWD. Root:shoot ratio increased significantly in both CE and AM under MWD and SWD. Furthermore, chlorophyll content decreased while proline content increased significantly in both MWD and SWD treatments. The production of oxidants (hydrogen peroxide and superoxide anions) and antioxidants (superoxide dismutase, catalase, peroxidase and ascorbate peroxidase) increased significantly under both MWD and SWD treatments and were the highest in AM in both MWD and SWD treatments. Therefore, we may conclude that all the three species can tolerate medium water stress due to increased root production and an effective antioxidant defense mechanism.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3336/pdfData sources: Multidisciplinary Digital Publishing InstituteGöttingen Research Online PublicationsArticle . 2021License: CC BYData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/6/3336/pdfData sources: Multidisciplinary Digital Publishing InstituteGöttingen Research Online PublicationsArticle . 2021License: CC BYData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Rizwan Iqbal; Rizwan Iqbal; Volkan Altay; Naheed Saba; Munir Ozturk; Khalid Rehman Hakeem; Faridah Hanum Ibrahim; Mohammad Jawaid;Abstract Among renewable energy sources, the share of biomass in total energy consumption in Turkey is increasing. Fuelwood and animal waste biomass are extensively used for heating and cooking in urban and rural areas. It has been estimated that Turkey has recoverable energy potential mainly originating from agricultural, livestock breeding, wood and forest processing, and municipality wastes. Annual production of wastes in the country amounts to 30 million tons. Turkey also produces 1.5 million tons of biodiesel, 3 million tons of bioethanol and 2.5–4.0 billion m3 of biogas per year. In Turkey, total biomass production is expected to reach a level of 52.5 Mtoe by 2030. Malaysia produces annually approximately 168 million tons of biomass, including timber, oil palm waste, rice husks, coconut trunk fibers, municipal and sugarcane wastes. Every year, nearly 58 million tons of palm oil mill effluent are produced in Malaysia. It has been estimated that the country has the potential to generate around 15 billion m3 of biogas annually. Estimates also show that Malaysia can produce more than 2400 MW of biomass and 410 MW of biogas, however, only 773 MW of the total potential was harnessed until 2011. The National Biomass Strategy 2020 proposes a scenario according to which an additional 20 million tonnes of oil palm biomass could be utilized by the year 2020 for higher value uses, which could significantly contribute to improving Malaysia's economy. Both countries have good potential to use biomass resources, but political backing and sustainable planning are necessary. In this review article, we try to compare future energy scenarios, renewable energy and biomass potentials of Turkey and Malaysia, while providing an insight into data on different biomass availability and its probable contribution to both nations’ economies.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu193 citations 193 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu