- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- Energy Research
- 12. Responsible consumption
description Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Ahmet Yakın; Rasim Behcet; Hamit Solmaz; Serdar Halis;handle: 11499/47425
Additives are added to conventional fuels to ensure complete combustion of fuels, increase engine performance and reduce harmful emissions from vehicles. Hydrogen and oxygen-containing fuel additives added to fossil-based internal combustion engine fuels improve the properties of the fuels and reduce vehicle-related emissions. Evaluation of mixed fuels created by adding different types of alcohol and nano-sized additives to motor fuels as an alternative fuel in motor vehicles is among the most researched scientific studies recently. In this study, alcohol-gasoline fuels (E5, M5), NaBH4-alcohol-gasoline fuels (ES5, MS5), and pure gasoline were tested in a gasoline engine. Fuels used in engine tests; E5 fuel (5% by volume ethanol 95% gasoline blend), M5 fuel (5% by volume methanol 95% gasoline blend), ES5 fuel (5% by volume NaBH4-ethanol solution 95% gasoline blend), MS5 fuel (5% by volume NaBH4-methanol solution 95% gasoline mixture) and pure gasoline. In the experiments, brake thermal efficiency, engine torque, specific fuel consumption, and exhaust gas temperature were measured and compared with pure gasoline. Compared to gasoline, the exhaust gas temperatures of all blended fuels decreased. On the other hand, there was an increase in engine torque values, except for ES5 fuel. At the same time, there was an increase in both specific fuel consumption and brake thermal efficiency. When the CO and HC emission values of the blended fuels are compared with the gasoline fuel values, the highest reduction in CO emissions occurred in ES5 blended fuel with 65.53%, while the highest decrease in HC emission was realized in E5 fuel with 19.09%. On the other hand, when NOx and CO2 emissions of E5, M5, ES5, MS5 mixed fuels are compared with gasoline, NOx emissions are 12.63%, 28.37%, 19.65%, respectively; decreased by 36.03% but CO2 emissions increased by 8.51%, 30.46%, 34.48%, 25.95% respectively. © 2022 Elsevier Ltd
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.energy.2022.124300Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.energy.2022.124300Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 TurkeyPublisher:Elsevier BV Ahmet Uyumaz; Yakup İçingür; Seyfi Polat; Seyfi Polat; Emre Yilmaz; Alper Calam; Hamit Solmaz;Abstract In order to decrease the dependency on petrol-originated energy resources, the utilization of different energy resources in internal combustion engines has been the center of interest of researchers. The main renewable alternative combustible species are ethanol, methanol, hydrogen, biodiesel, and biogas. On the other hand, appearing as a by-product during alcohol production via fermentation, the fusel oil is another alternative energy resource which can be used in internal combustion engines. Containing high alcohols, fusel oil is dark brown colored alcohol mixture, and has a strong odor. The calorific value of fusel oil close to other alternative combustible types ones and the limited number of researches on utilization of fusel oil, an alcohol derivative, in internal combustion engines constitute the base of this research. In this study, the effects of the mixture of unleaded gasoline and fusel oil on engine torque, brake specific fuel consumption and exhaust emissions in a single cylinder, spark ignition engine having port-type fuel infection system at various engine speeds and loads have been investigated. As a result of research carried out, as the amount of fusel oil in mixture increased, the improvements have been observed in engine torque at all of engine speeds and loads compared to pure unleaded gasoline. It has been determined that the brake specific fuel consumption and carbon monoxide (CO) and hydro-carbon (HC) emissions have increased while nitrogen-oxide (NO x ) emissions have decreased.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2014.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2014.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 TurkeyPublisher:Elsevier BV Öztürk, Erkan; Solmaz, H.; Aksoy, F.; Çinar, C.; Yücesu, H.S.; Can, Özer;handle: 11499/9684
Abstract In this study, soybean biodiesel fuel was blended in 20 vol.% with diesel fuel and tested in a single-cylinder, DI, four-stroke diesel engine under four different engine loads (15, 11.25, 7.5 and 3.75 Nm) and 2200 rpm engine speed with different EGR rates (5, 10, 15%). The results showed that the maximum heat release rate and maximum in-cylinder pressure were mostly increased with the combined effects of biodiesel fuel addition and EGR application. Premixed combustion fractions were generally increased at all the engine loads with corresponding decrease in the diffusion combustion fractions. Combustion durations were generally stable while the center of the heat release rates shifted toward TDC. Reasonable increments on the BSFC and reductions on BTE as a maximum 6% and 3% occurred with 15% EGR, respectively. NOx and smoke emissions were improved simultaneously up to 55% and 15% at the high engine load, respectively. THC emissions at the low and medium engine loads decreased while deteriorations were observed with more than 5% EGR at the high engine load. Although CO emissions showed insignificant changes, there were increments at the high engine load. However, CO2 emissions were slightly higher for all the engine loads.
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2016Full-Text: https://hdl.handle.net/11499/9684Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2015.11.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 58visibility views 58 download downloads 9 Powered bymore_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2016Full-Text: https://hdl.handle.net/11499/9684Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2015.11.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Ahmet Yakın; Rasim Behcet; Hamit Solmaz; Serdar Halis;handle: 11499/47425
Additives are added to conventional fuels to ensure complete combustion of fuels, increase engine performance and reduce harmful emissions from vehicles. Hydrogen and oxygen-containing fuel additives added to fossil-based internal combustion engine fuels improve the properties of the fuels and reduce vehicle-related emissions. Evaluation of mixed fuels created by adding different types of alcohol and nano-sized additives to motor fuels as an alternative fuel in motor vehicles is among the most researched scientific studies recently. In this study, alcohol-gasoline fuels (E5, M5), NaBH4-alcohol-gasoline fuels (ES5, MS5), and pure gasoline were tested in a gasoline engine. Fuels used in engine tests; E5 fuel (5% by volume ethanol 95% gasoline blend), M5 fuel (5% by volume methanol 95% gasoline blend), ES5 fuel (5% by volume NaBH4-ethanol solution 95% gasoline blend), MS5 fuel (5% by volume NaBH4-methanol solution 95% gasoline mixture) and pure gasoline. In the experiments, brake thermal efficiency, engine torque, specific fuel consumption, and exhaust gas temperature were measured and compared with pure gasoline. Compared to gasoline, the exhaust gas temperatures of all blended fuels decreased. On the other hand, there was an increase in engine torque values, except for ES5 fuel. At the same time, there was an increase in both specific fuel consumption and brake thermal efficiency. When the CO and HC emission values of the blended fuels are compared with the gasoline fuel values, the highest reduction in CO emissions occurred in ES5 blended fuel with 65.53%, while the highest decrease in HC emission was realized in E5 fuel with 19.09%. On the other hand, when NOx and CO2 emissions of E5, M5, ES5, MS5 mixed fuels are compared with gasoline, NOx emissions are 12.63%, 28.37%, 19.65%, respectively; decreased by 36.03% but CO2 emissions increased by 8.51%, 30.46%, 34.48%, 25.95% respectively. © 2022 Elsevier Ltd
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.energy.2022.124300Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2022Full-Text: https://doi.org/10.1016/j.energy.2022.124300Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124300&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 TurkeyPublisher:Elsevier BV Ahmet Uyumaz; Yakup İçingür; Seyfi Polat; Seyfi Polat; Emre Yilmaz; Alper Calam; Hamit Solmaz;Abstract In order to decrease the dependency on petrol-originated energy resources, the utilization of different energy resources in internal combustion engines has been the center of interest of researchers. The main renewable alternative combustible species are ethanol, methanol, hydrogen, biodiesel, and biogas. On the other hand, appearing as a by-product during alcohol production via fermentation, the fusel oil is another alternative energy resource which can be used in internal combustion engines. Containing high alcohols, fusel oil is dark brown colored alcohol mixture, and has a strong odor. The calorific value of fusel oil close to other alternative combustible types ones and the limited number of researches on utilization of fusel oil, an alcohol derivative, in internal combustion engines constitute the base of this research. In this study, the effects of the mixture of unleaded gasoline and fusel oil on engine torque, brake specific fuel consumption and exhaust emissions in a single cylinder, spark ignition engine having port-type fuel infection system at various engine speeds and loads have been investigated. As a result of research carried out, as the amount of fusel oil in mixture increased, the improvements have been observed in engine torque at all of engine speeds and loads compared to pure unleaded gasoline. It has been determined that the brake specific fuel consumption and carbon monoxide (CO) and hydro-carbon (HC) emissions have increased while nitrogen-oxide (NO x ) emissions have decreased.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2014.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2014.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 TurkeyPublisher:Elsevier BV Öztürk, Erkan; Solmaz, H.; Aksoy, F.; Çinar, C.; Yücesu, H.S.; Can, Özer;handle: 11499/9684
Abstract In this study, soybean biodiesel fuel was blended in 20 vol.% with diesel fuel and tested in a single-cylinder, DI, four-stroke diesel engine under four different engine loads (15, 11.25, 7.5 and 3.75 Nm) and 2200 rpm engine speed with different EGR rates (5, 10, 15%). The results showed that the maximum heat release rate and maximum in-cylinder pressure were mostly increased with the combined effects of biodiesel fuel addition and EGR application. Premixed combustion fractions were generally increased at all the engine loads with corresponding decrease in the diffusion combustion fractions. Combustion durations were generally stable while the center of the heat release rates shifted toward TDC. Reasonable increments on the BSFC and reductions on BTE as a maximum 6% and 3% occurred with 15% EGR, respectively. NOx and smoke emissions were improved simultaneously up to 55% and 15% at the high engine load, respectively. THC emissions at the low and medium engine loads decreased while deteriorations were observed with more than 5% EGR at the high engine load. Although CO emissions showed insignificant changes, there were increments at the high engine load. However, CO2 emissions were slightly higher for all the engine loads.
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2016Full-Text: https://hdl.handle.net/11499/9684Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2015.11.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 126 citations 126 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 58visibility views 58 download downloads 9 Powered bymore_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2016Full-Text: https://hdl.handle.net/11499/9684Data sources: Bielefeld Academic Search Engine (BASE)Applied Thermal EngineeringArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2015.11.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu