- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:NSF | CNH: Ecosystems and Socie...NSF| CNH: Ecosystems and Societies: Divergent Trajectories and CoevolutionJiquan Chen; Ranjeet John; Changliang Shao; Zutao Ouyang; Elizabeth A. Mack; Geoffrey M. Henebry; Gang Dong; Ginger R. H. Allington; Amber L. Pearson; Fangyuan Zhao; David P. Roy; Peilei Fan; Gabriela E. Shirkey; Li Tian; Maira Kussainova; Jingyan Chen; David E. Reed; Michael Abraha;doi: 10.3390/su132011246
Integrating the dynamics and interconnections of natural and human system properties into a single measure would make it simpler to reliably and repeatedly assess and compare different social-environmental systems (SES). We propose a novel metric to assess the magnitudes and variations in SES dynamics by integrating longitudinal gross domestic product, population, and ecosystem net primary production. We use annual public data across the Asian Drylands Belt (ADB) from 1992 through 2016 for 18 political entities as our testbed for assessing the efficacy of the metric. We perform cross-comparisons with existing natural and social science metrics to demonstrate the validity of the proposed metric, including the Human Development Index and the Palmer Drought Severity Index. The new metric demonstrates notable and meaningful differences in trends among the political entities that reflect major social, economic and environmental events over the 25-year period. It provides unique perspectives about the three pillar components (social, economic and environmental systems) in each of the 18 political entities (PE) of the ADB. The metric also shows meaningful associations with key economic and environmental indicators and great potential for broader application and evaluation, given additional testing in other countries, regions, and biomes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Eurasian Journal of Soil Sciences Maira KUSSAİNOVA; Maxat TOİSHİMANOV; Gulnaz ISKAKOVA; Nursultan NURGALİ; Jiquan CHEN;The present study investigates the effects of different fertilization practices, including chemical and organic fertilizers, on CH4 and N2O emissions in various crop cultivation systems in Kazakhstan. The research focuses on three staple crops: wheat, barley, and corn, which are commonly grown in the region. A randomized complete block design field trial was conducted with three replications for each crop, totaling 27 plots. Gas sampling was carried out five times between June and September 2021, with cylindrical gas sampling chambers inserted into the soil at a depth of 10 cm. The concentrations of CH4 and N2O were analyzed using GS-MS. Results reveal that all three crops exhibited moderate to high CH4 and N2O emissions, with corn consistently displaying the highest emissions. Both chemical and organic fertilizers led to increased emissions of CH4 and N2O compared to control plots. The organic fertilizer treatment occasionally showed slightly higher emissions compared to chemical fertilizer treatment. However, the differences in CH4 and N2O concentrations between fertilized and unfertilized plots were not drastically significant. Notably, environmental factors, such as soil moisture and temperature, played a more prominent role in influencing CH4 and N2O production than the type of fertilizer applied. These findings underscore the significance of optimizing fertilization practices to minimize greenhouse gas emissions while maintaining crop productivity and promoting sustainable agriculture in Kazakhstan.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18393/ejss.1344462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18393/ejss.1344462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 United StatesPublisher:MDPI AG Funded by:NSF | Environmental Sensor Netw...NSF| Environmental Sensor Network for the Lake Erie CenterZutao Ouyang; Housen Chu; Ranjeet John; Changliang Shao; Thomas B. Bridgeman; Jiquan Chen; Carol A. Stepien; Carol A. Stepien; Richard Becker;doi: 10.3390/rs9010044
Lakes are important components for regulating carbon cycling within landscapes. Most lakes are regarded as CO2 sources to the atmosphere, except for a few eutrophic ones. Algal blooms are common phenomena in many eutrophic lakes and can cause many environmental stresses, yet their effects on the net exchange of CO2 (FCO2) at large spatial scales have not been adequately addressed. We integrated remote sensing and Eddy Covariance (EC) technologies to investigate the effects that algal blooms have on FCO2 in the western basin of Lake Erie—a large lake infamous for these blooms. Three years of long-term EC data (2012–2014) at two sites were analyzed. We found that at both sites: (1) daily FCO2 significantly correlated with daily temperature, light, and wind speed during the algal bloom periods; (2) monthly FCO2 was negatively correlated with chlorophyll-a concentration; and (3) the year with larger algal blooms was always associated with lower carbon emissions. We concluded that large algal blooms could reduce carbon emissions in the western basin of Lake Erie. However, considering the complexity of processes within large lakes, the weak relationship we found, and the potential uncertainties that remain in our estimations of FCO2 and chlorophyll-a, we argue that additional data and analyses are needed to validate our conclusion and examine the underlying regulatory mechanisms.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2072-4292/9/1/44/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/7348637tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9010044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2072-4292/9/1/44/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/7348637tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9010044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint , Report 2021 France, GermanyPublisher:Copernicus GmbH Funded by:NSF | Collaborative Research: C..., EC | CRESCENDO, NSERC +2 projectsNSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,EC| CRESCENDO ,NSERC ,DFG| Integrated Climate System Analysis and Prediction (CliSAP) ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and SiberiaPhilippe Peylin; Janina Klatt; Christophe Guimbaud; Annalea Lohila; Philippe Ciais; Eugénie S. Euskirchen; Fabrice Jégou; Housen Chu; Natalia Kowalska; Lutz Merbold; Mika Aurela; Vladislav Bastrikov; C. Edgar; Lawrence B. Flanagan; Line Jourdain; Sébastien Gogo; Elodie Salmon; Bogdan H. Chojnicki; Lars Kutzbach; Klaudia Ziemblińska; Dan Zhu; Dan Zhu; M. Syndonia Bret-Harte; Fatima Laggoun-Défarge; Krzysztof Fortuniak; Torsten Sachs; David Holl; Bertrand Guenet; Bertrand Guenet; Olaf Kolle; Włodzimierz Pawlak; Jiquan Chen; Chunjing Qiu;Abstract. In the global methane budget, the largest natural source is attributed to wetlands, which encompass all ecosystems composed of waterlogged or inundated ground, capable of methane production. Among them, northern peatlands that store large amounts of soil organic carbon have been functioning, since the end of the last glaciation period, as long-term sources of methane (CH4) and are one of the most significant methane sources among wetlands. To reduce uncertainty of quantifying methane flux in the global methane budget, it is of significance to understand the underlying processes for methane production and fluxes in northern peatlands. A methane model that features methane production and transport by plants, ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model that includes an explicit representation of northern peatlands. ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributed on both the Eurasian and American continents in the northern boreal and temperate regions. Data assimilation approaches were employed to optimized parameters at each site and at all sites simultaneously. Results show that methanogenesis is sensitive to temperature and substrate availability over the top 75 cm of soil depth. Methane emissions estimated using single site optimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 yr−1 on average (i.e., 50 % higher than the site average of yearly methane emissions). While using the multi-site optimization (MSO), methane emissions are overestimated by 5 g CH4 m−2 yr−1 on average across all investigated sites (i.e., 37 % lower than the site average of yearly methane emissions).
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesInstitut National de la Recherche Agronomique: ProdINRAReport . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-15-2813-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesInstitut National de la Recherche Agronomique: ProdINRAReport . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-15-2813-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:MDPI AG Funded by:NSF | SEP: Earth-abundant thin-...NSF| SEP: Earth-abundant thin-film solar cells as a sustainable solar energy pathwayAuthors: Ruqun Wu; Dan Yang; Jiquan Chen;doi: 10.3390/su6074200
To promote the development of Social Life Cycle Assessment (SLCA), we conducted a comprehensive review of recently developed frameworks, methods, and characterization models for impact assessment for future method developers and SLCA practitioners. Two previous reviews served as our foundations for this review. We updated the review by including a comprehensive list of recently-developed SLCA frameworks, methods and characterization models. While a brief discussion from goal, data, and indicator perspectives is provided in Sections 2 to 4 for different frameworks/methods, the focus of this review is Section 5 where discussion on characterization models for impact assessment of different methods is provided. The characterization models are categorized into two types following the UNEP/SETAC guidelines: type I models without impact pathways and type II models with impact pathways. Different from methods incorporating type I/II characterization models, another LCA modeling approach, Life Cycle Attribute Assessment (LCAA), is also discussed in this review. We concluded that methods incorporating either type I or type II models have limitations. For type I models, the challenge lies in the systematic identification of relevant stakeholders and materiality issues; while for type II models, identification of impact pathways that most closely and accurately represent the real-world causal relationships is the key. LCAA may avoid these problems, but the ultimate questions differ from those asked by the methods using type I and II models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6074200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6074200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Peilei Fan; Jiquan Chen; Tanni Sarker;doi: 10.3390/su14042342
We identified four distinct clusters of 151 countries based on COVID-19 prevalence rate from 1 February 2020 to 29 May 2021 by performing nonparametric K-means cluster analysis (KmL). We forecasted future development of the clusters by using a nonlinear 3-parameter logistic (3PL) model, and found that peak points of development are the latest for Cluster I and earliest for Cluster IV. Based on partial least squares structural equation modeling (PLS-SEM) for the first twenty weeks after 1 February 2020, we found that the prevalence rate of COVID-19 has been significantly influenced by major elements of human systems. Better health infrastructure, more restriction of human mobility, higher urban population density, and less urban environmental degradation are associated with lower levels of prevalence rate (PR) of COVID-19. The most striking discovery of this study is that economic development hindered the control of COVID-19 spread among countries in the early stage of the pandemic. Highlights: While richer countries have advantages in health and other urban infrastructures that may alleviate the prevalence rate of COVID-19, the combination of high economic development level and low restriction on human mobility has led to faster spread of the virus in the first 20 weeks after 1 February 2020.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/4/2342/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14042342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/4/2342/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14042342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Susie Wu; Changliang Shao; Jiquan Chen;doi: 10.3390/su10093233
Recent decades have seen a surge in corporate sustainability reports (SRs); their proliferation, however, does not ensure effective and consistent reporting on materiality. To improve the completeness, consistency and uniformity of SRs, this study aims at providing a review on the definition and identification of materiality and to propose screening methods for materiality assessments using publicly available resources. We found that most acknowledged standards and initiatives diverge in their definitions and approaches towards materiality. Four screening methods are proposed, including two that are directly usable: (1) Sustainability Accounting Standards Board Materiality Map™ and (2) Global Reporting Initiative (GRI) Sustainability Topics for Sectors; and two involving more desktop research: (3) GRI’s Sustainability Disclosure Database and (4) modeling from a life-cycle perspective. The second and third approaches are tested through a comparison study for the apparel and energy industries in selected regions using content analysis. The results indicate that the two approaches, with different levels of complexity, yield inconsistency in obtaining the most (i.e., the top three) material topics. The GRI’s Sustainability Disclosure Database is recommended for practitioners due to its balanced disclosure on management, economic, environmental and social sustainability themes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Finland, DenmarkPublisher:IOP Publishing Funded by:NSERC, AKA | Role of upland forest soi..., AKA | Centre of Excellence in A... +3 projectsNSERC ,AKA| Role of upland forest soils in regional methane balance: from catchment to global scales / Consortium: UPFORMET ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,NSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,AKA| Carbon dynamics across Arctic landscape gradients: past, present and future (CAPTURE) / Consortium: CAPTURE ,EC| RINGOPavel Alekseychik; Daniel F. Nadeau; Brian D. Amiro; Vyacheslav Zyrianov; Allison L. Dunn; Manuel Helbig; Manuel Helbig; Mats Nilsson; Elena D. Lapshina; Annalea Lohila; Mika Korkiakoski; Mikaell Ottosson Löfvenius; Silvie Harder; Hiroki Ikawa; Christopher Schulze; Timo Vesala; Elyn Humphreys; Matthias Peichl; William L. Quinton; Nigel T. Roulet; Erin M. Nicholls; Anders Lindroth; Andrej Varlagin; Sean K. Carey; Ian B. Strachan; Richard M. Petrone; Eugénie S. Euskirchen; Lars Kutzbach; Oliver Sonnentag; Masahito Ueyama; Juha-Pekka Tuovinen; Michelle Garneau; Hiroki Iwata; Takeshi Ohta; Trofim C. Maximov; Ankur R. Desai; Alan G. Barr; Anatoly S. Prokushkin; Philip Marsh; Lawrence B. Flanagan; Pierre-Erik Isabelle; Paul A. Moore; Juliya Kurbatova; T. Andrew Black; Eeva-Stiina Tuittila; Mika Aurela; Jinshu Chi; Thomas Friborg; Martin Wilmking; Pierre Taillardat; Jiquan Chen; Benjamin R. K. Runkle; Benjamin R. K. Runkle; Rachhpal S. Jassal; Ivan Mammarella; Jessica Turner; James M. Waddington; Michal Heliasz; Achim Grelle;handle: 10138/321067
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests—the dominant boreal forest type—and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.
Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Italy, Netherlands, France, Italy, France, FrancePublisher:Elsevier BV Funded by:EC | GHG EUROPE, EC | ICOSEC| GHG EUROPE ,EC| ICOSCasimiro Pio; Asko Noormets; Magnus Lund; Simon Munier; Xiaotong Zhang; Thomas Grünwald; Leonardo Montagnani; Sebastian Wolf; Anders Lindroth; Antonio Raschi; Peter D. Blanken; Yunjun Yao; Moors Eddy; Moors Eddy; Meng Liu; Kun Jia; Vincenzo Magliulo; Jian Yu; Andrej Varlagin; Shunlin Liang; Jean-Christophe Domec; Jean-Christophe Domec; Shaomin Liu; Georg Wohlfahrt; Xianglan Li; Xianhong Xie; Ge Sun; Jiquan Chen; Bo Jiang;handle: 20.500.14243/293934
The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the global hydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison with eddy covariance (EC) observations from 240 globally distributed sites from 2000 to 2009. In addition, we improved global terrestrial LE estimates for different land cover types by synthesis of seven best CMIP5 models and EC observations based on a Bayesian model averaging (BMA) method. The comparison results showed substantial differences in monthly LE among all GCMs. The model CESM1-CAM5 has the best performance with the highest predictive skill and a Taylor skill score (S) from 0.51–0.75 for different land cover types. The cross-validation results illustrate that the BMA method has improved the accuracy of the CMIP5 GCM’s LE simulation with a decrease in the averaged root-mean-square error (RMSE) by more than 3 W/m2 when compared to the simple model averaging (SMA) method and individual GCMs. We found an increasing trend in the BMA-based global terrestrial LE (slope of 0.018 W/m2 yr−1, p < 0.05) during the period 1970–2005. This variation may be attributed directly to the inter-annual variations in air temperature (Ta), surface incident solar radiation (Rs) and precipitation (P). However, our study highlights a large difference from previous studies in a continuous increasing trend after 1998, which may be caused by the combined effects of the variations of Rs, Ta, and P on LE for different models on these time scales. This study provides corrected-modeling evidence for an accelerated global water cycle with climate change.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverAgricultural and Forest MeteorologyArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2016.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverAgricultural and Forest MeteorologyArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2016.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:IOP Publishing Peilei Fan; Jiquan Chen; Zutao Ouyang; Pavel Groisman; Tatiana Loboda; Garik Gutman; Alexander V Prishchepov; Anna Kvashnina; Joseph Messina; Nathan Moore; Soe W Myint; Jiaguo Qi;Spanning a vast territory of approximately 13 million km ^2 , Asian Russia was home to 38 million people in 2016. In an effort to synthesize data and knowledge regarding urbanization and sustainable development in Asian Russia in the context of socioeconomic transformation following the breakup of the Soviet Union in 1990, we quantified the spatiotemporal changes of urban dynamics using satellite imagery and explored the interrelationships between urbanization and sustainability. We then developed a sustainability index, complemented with structural equation modeling, for a comprehensive analysis of their dynamics. We chose six case cities, i.e., Yekaterinburg, Novosibirsk, Krasnoyarsk, Omsk, Irkutsk, and Khabarovsk, as representatives of large cities to investigate whether large cities are in sync with the region in terms of population dynamics, urbanization, and sustainability. Our major findings include the following. First, Asian Russia experienced enhanced economic growth despite the declining population. Furthermore, our case cities showed a general positive trend for population dynamics and urbanization as all except Irkutsk experienced population increases and all expanded their urban built-up areas, ranging from 13% to 16% from 1990 to 2014. Second, Asian Russia and its three federal districts have improved their sustainability and levels of economic development, environmental conditions, and social development. Although both regional sustainability and economic development experienced a serious dip in the 1990s, environmental conditions and social development continuously improved from 1990 to 2014, with social development particularly improving after 1995. Third, in terms of the relationships between urbanization and sustainability, economic development appeared as an important driver of urbanization, social development, and environmental degradation in Asian Russia, with economic development having a stronger influence on urbanization than on social development or environmental degradation.
Environmental Resear... arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aadbf8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aadbf8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:NSF | CNH: Ecosystems and Socie...NSF| CNH: Ecosystems and Societies: Divergent Trajectories and CoevolutionJiquan Chen; Ranjeet John; Changliang Shao; Zutao Ouyang; Elizabeth A. Mack; Geoffrey M. Henebry; Gang Dong; Ginger R. H. Allington; Amber L. Pearson; Fangyuan Zhao; David P. Roy; Peilei Fan; Gabriela E. Shirkey; Li Tian; Maira Kussainova; Jingyan Chen; David E. Reed; Michael Abraha;doi: 10.3390/su132011246
Integrating the dynamics and interconnections of natural and human system properties into a single measure would make it simpler to reliably and repeatedly assess and compare different social-environmental systems (SES). We propose a novel metric to assess the magnitudes and variations in SES dynamics by integrating longitudinal gross domestic product, population, and ecosystem net primary production. We use annual public data across the Asian Drylands Belt (ADB) from 1992 through 2016 for 18 political entities as our testbed for assessing the efficacy of the metric. We perform cross-comparisons with existing natural and social science metrics to demonstrate the validity of the proposed metric, including the Human Development Index and the Palmer Drought Severity Index. The new metric demonstrates notable and meaningful differences in trends among the political entities that reflect major social, economic and environmental events over the 25-year period. It provides unique perspectives about the three pillar components (social, economic and environmental systems) in each of the 18 political entities (PE) of the ADB. The metric also shows meaningful associations with key economic and environmental indicators and great potential for broader application and evaluation, given additional testing in other countries, regions, and biomes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132011246&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Eurasian Journal of Soil Sciences Maira KUSSAİNOVA; Maxat TOİSHİMANOV; Gulnaz ISKAKOVA; Nursultan NURGALİ; Jiquan CHEN;The present study investigates the effects of different fertilization practices, including chemical and organic fertilizers, on CH4 and N2O emissions in various crop cultivation systems in Kazakhstan. The research focuses on three staple crops: wheat, barley, and corn, which are commonly grown in the region. A randomized complete block design field trial was conducted with three replications for each crop, totaling 27 plots. Gas sampling was carried out five times between June and September 2021, with cylindrical gas sampling chambers inserted into the soil at a depth of 10 cm. The concentrations of CH4 and N2O were analyzed using GS-MS. Results reveal that all three crops exhibited moderate to high CH4 and N2O emissions, with corn consistently displaying the highest emissions. Both chemical and organic fertilizers led to increased emissions of CH4 and N2O compared to control plots. The organic fertilizer treatment occasionally showed slightly higher emissions compared to chemical fertilizer treatment. However, the differences in CH4 and N2O concentrations between fertilized and unfertilized plots were not drastically significant. Notably, environmental factors, such as soil moisture and temperature, played a more prominent role in influencing CH4 and N2O production than the type of fertilizer applied. These findings underscore the significance of optimizing fertilization practices to minimize greenhouse gas emissions while maintaining crop productivity and promoting sustainable agriculture in Kazakhstan.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18393/ejss.1344462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18393/ejss.1344462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 United StatesPublisher:MDPI AG Funded by:NSF | Environmental Sensor Netw...NSF| Environmental Sensor Network for the Lake Erie CenterZutao Ouyang; Housen Chu; Ranjeet John; Changliang Shao; Thomas B. Bridgeman; Jiquan Chen; Carol A. Stepien; Carol A. Stepien; Richard Becker;doi: 10.3390/rs9010044
Lakes are important components for regulating carbon cycling within landscapes. Most lakes are regarded as CO2 sources to the atmosphere, except for a few eutrophic ones. Algal blooms are common phenomena in many eutrophic lakes and can cause many environmental stresses, yet their effects on the net exchange of CO2 (FCO2) at large spatial scales have not been adequately addressed. We integrated remote sensing and Eddy Covariance (EC) technologies to investigate the effects that algal blooms have on FCO2 in the western basin of Lake Erie—a large lake infamous for these blooms. Three years of long-term EC data (2012–2014) at two sites were analyzed. We found that at both sites: (1) daily FCO2 significantly correlated with daily temperature, light, and wind speed during the algal bloom periods; (2) monthly FCO2 was negatively correlated with chlorophyll-a concentration; and (3) the year with larger algal blooms was always associated with lower carbon emissions. We concluded that large algal blooms could reduce carbon emissions in the western basin of Lake Erie. However, considering the complexity of processes within large lakes, the weak relationship we found, and the potential uncertainties that remain in our estimations of FCO2 and chlorophyll-a, we argue that additional data and analyses are needed to validate our conclusion and examine the underlying regulatory mechanisms.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2072-4292/9/1/44/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/7348637tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9010044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2072-4292/9/1/44/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversity of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/7348637tData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs9010044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal , Preprint , Report 2021 France, GermanyPublisher:Copernicus GmbH Funded by:NSF | Collaborative Research: C..., EC | CRESCENDO, NSERC +2 projectsNSF| Collaborative Research: Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and Siberia ,EC| CRESCENDO ,NSERC ,DFG| Integrated Climate System Analysis and Prediction (CliSAP) ,NSF| Collaborative Research on Carbon, Water, and Energy Balance of the Arctic Landscape at Flagship Observatories in Alaska and SiberiaPhilippe Peylin; Janina Klatt; Christophe Guimbaud; Annalea Lohila; Philippe Ciais; Eugénie S. Euskirchen; Fabrice Jégou; Housen Chu; Natalia Kowalska; Lutz Merbold; Mika Aurela; Vladislav Bastrikov; C. Edgar; Lawrence B. Flanagan; Line Jourdain; Sébastien Gogo; Elodie Salmon; Bogdan H. Chojnicki; Lars Kutzbach; Klaudia Ziemblińska; Dan Zhu; Dan Zhu; M. Syndonia Bret-Harte; Fatima Laggoun-Défarge; Krzysztof Fortuniak; Torsten Sachs; David Holl; Bertrand Guenet; Bertrand Guenet; Olaf Kolle; Włodzimierz Pawlak; Jiquan Chen; Chunjing Qiu;Abstract. In the global methane budget, the largest natural source is attributed to wetlands, which encompass all ecosystems composed of waterlogged or inundated ground, capable of methane production. Among them, northern peatlands that store large amounts of soil organic carbon have been functioning, since the end of the last glaciation period, as long-term sources of methane (CH4) and are one of the most significant methane sources among wetlands. To reduce uncertainty of quantifying methane flux in the global methane budget, it is of significance to understand the underlying processes for methane production and fluxes in northern peatlands. A methane model that features methane production and transport by plants, ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model that includes an explicit representation of northern peatlands. ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributed on both the Eurasian and American continents in the northern boreal and temperate regions. Data assimilation approaches were employed to optimized parameters at each site and at all sites simultaneously. Results show that methanogenesis is sensitive to temperature and substrate availability over the top 75 cm of soil depth. Methane emissions estimated using single site optimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 yr−1 on average (i.e., 50 % higher than the site average of yearly methane emissions). While using the multi-site optimization (MSO), methane emissions are overestimated by 5 g CH4 m−2 yr−1 on average across all investigated sites (i.e., 37 % lower than the site average of yearly methane emissions).
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesInstitut National de la Recherche Agronomique: ProdINRAReport . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-15-2813-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Report . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2021Full-Text: https://insu.hal.science/insu-03578235Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://insu.hal.science/insu-03656303Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesInstitut National de la Recherche Agronomique: ProdINRAReport . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-15-2813-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:MDPI AG Funded by:NSF | SEP: Earth-abundant thin-...NSF| SEP: Earth-abundant thin-film solar cells as a sustainable solar energy pathwayAuthors: Ruqun Wu; Dan Yang; Jiquan Chen;doi: 10.3390/su6074200
To promote the development of Social Life Cycle Assessment (SLCA), we conducted a comprehensive review of recently developed frameworks, methods, and characterization models for impact assessment for future method developers and SLCA practitioners. Two previous reviews served as our foundations for this review. We updated the review by including a comprehensive list of recently-developed SLCA frameworks, methods and characterization models. While a brief discussion from goal, data, and indicator perspectives is provided in Sections 2 to 4 for different frameworks/methods, the focus of this review is Section 5 where discussion on characterization models for impact assessment of different methods is provided. The characterization models are categorized into two types following the UNEP/SETAC guidelines: type I models without impact pathways and type II models with impact pathways. Different from methods incorporating type I/II characterization models, another LCA modeling approach, Life Cycle Attribute Assessment (LCAA), is also discussed in this review. We concluded that methods incorporating either type I or type II models have limitations. For type I models, the challenge lies in the systematic identification of relevant stakeholders and materiality issues; while for type II models, identification of impact pathways that most closely and accurately represent the real-world causal relationships is the key. LCAA may avoid these problems, but the ultimate questions differ from those asked by the methods using type I and II models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6074200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6074200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Peilei Fan; Jiquan Chen; Tanni Sarker;doi: 10.3390/su14042342
We identified four distinct clusters of 151 countries based on COVID-19 prevalence rate from 1 February 2020 to 29 May 2021 by performing nonparametric K-means cluster analysis (KmL). We forecasted future development of the clusters by using a nonlinear 3-parameter logistic (3PL) model, and found that peak points of development are the latest for Cluster I and earliest for Cluster IV. Based on partial least squares structural equation modeling (PLS-SEM) for the first twenty weeks after 1 February 2020, we found that the prevalence rate of COVID-19 has been significantly influenced by major elements of human systems. Better health infrastructure, more restriction of human mobility, higher urban population density, and less urban environmental degradation are associated with lower levels of prevalence rate (PR) of COVID-19. The most striking discovery of this study is that economic development hindered the control of COVID-19 spread among countries in the early stage of the pandemic. Highlights: While richer countries have advantages in health and other urban infrastructures that may alleviate the prevalence rate of COVID-19, the combination of high economic development level and low restriction on human mobility has led to faster spread of the virus in the first 20 weeks after 1 February 2020.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/4/2342/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14042342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/4/2342/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14042342&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Susie Wu; Changliang Shao; Jiquan Chen;doi: 10.3390/su10093233
Recent decades have seen a surge in corporate sustainability reports (SRs); their proliferation, however, does not ensure effective and consistent reporting on materiality. To improve the completeness, consistency and uniformity of SRs, this study aims at providing a review on the definition and identification of materiality and to propose screening methods for materiality assessments using publicly available resources. We found that most acknowledged standards and initiatives diverge in their definitions and approaches towards materiality. Four screening methods are proposed, including two that are directly usable: (1) Sustainability Accounting Standards Board Materiality Map™ and (2) Global Reporting Initiative (GRI) Sustainability Topics for Sectors; and two involving more desktop research: (3) GRI’s Sustainability Disclosure Database and (4) modeling from a life-cycle perspective. The second and third approaches are tested through a comparison study for the apparel and energy industries in selected regions using content analysis. The results indicate that the two approaches, with different levels of complexity, yield inconsistency in obtaining the most (i.e., the top three) material topics. The GRI’s Sustainability Disclosure Database is recommended for practitioners due to its balanced disclosure on management, economic, environmental and social sustainability themes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of), China (People's Republic of), China (People's Republic of), Finland, DenmarkPublisher:IOP Publishing Funded by:NSERC, AKA | Role of upland forest soi..., AKA | Centre of Excellence in A... +3 projectsNSERC ,AKA| Role of upland forest soils in regional methane balance: from catchment to global scales / Consortium: UPFORMET ,AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,NSF| LTER: Comparative Study of a Suite of Lakes in Wisconsin ,AKA| Carbon dynamics across Arctic landscape gradients: past, present and future (CAPTURE) / Consortium: CAPTURE ,EC| RINGOPavel Alekseychik; Daniel F. Nadeau; Brian D. Amiro; Vyacheslav Zyrianov; Allison L. Dunn; Manuel Helbig; Manuel Helbig; Mats Nilsson; Elena D. Lapshina; Annalea Lohila; Mika Korkiakoski; Mikaell Ottosson Löfvenius; Silvie Harder; Hiroki Ikawa; Christopher Schulze; Timo Vesala; Elyn Humphreys; Matthias Peichl; William L. Quinton; Nigel T. Roulet; Erin M. Nicholls; Anders Lindroth; Andrej Varlagin; Sean K. Carey; Ian B. Strachan; Richard M. Petrone; Eugénie S. Euskirchen; Lars Kutzbach; Oliver Sonnentag; Masahito Ueyama; Juha-Pekka Tuovinen; Michelle Garneau; Hiroki Iwata; Takeshi Ohta; Trofim C. Maximov; Ankur R. Desai; Alan G. Barr; Anatoly S. Prokushkin; Philip Marsh; Lawrence B. Flanagan; Pierre-Erik Isabelle; Paul A. Moore; Juliya Kurbatova; T. Andrew Black; Eeva-Stiina Tuittila; Mika Aurela; Jinshu Chi; Thomas Friborg; Martin Wilmking; Pierre Taillardat; Jiquan Chen; Benjamin R. K. Runkle; Benjamin R. K. Runkle; Rachhpal S. Jassal; Ivan Mammarella; Jessica Turner; James M. Waddington; Michal Heliasz; Achim Grelle;handle: 10138/321067
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests—the dominant boreal forest type—and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.
Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down HELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abab34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Italy, Netherlands, France, Italy, France, FrancePublisher:Elsevier BV Funded by:EC | GHG EUROPE, EC | ICOSEC| GHG EUROPE ,EC| ICOSCasimiro Pio; Asko Noormets; Magnus Lund; Simon Munier; Xiaotong Zhang; Thomas Grünwald; Leonardo Montagnani; Sebastian Wolf; Anders Lindroth; Antonio Raschi; Peter D. Blanken; Yunjun Yao; Moors Eddy; Moors Eddy; Meng Liu; Kun Jia; Vincenzo Magliulo; Jian Yu; Andrej Varlagin; Shunlin Liang; Jean-Christophe Domec; Jean-Christophe Domec; Shaomin Liu; Georg Wohlfahrt; Xianglan Li; Xianhong Xie; Ge Sun; Jiquan Chen; Bo Jiang;handle: 20.500.14243/293934
The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the global hydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison with eddy covariance (EC) observations from 240 globally distributed sites from 2000 to 2009. In addition, we improved global terrestrial LE estimates for different land cover types by synthesis of seven best CMIP5 models and EC observations based on a Bayesian model averaging (BMA) method. The comparison results showed substantial differences in monthly LE among all GCMs. The model CESM1-CAM5 has the best performance with the highest predictive skill and a Taylor skill score (S) from 0.51–0.75 for different land cover types. The cross-validation results illustrate that the BMA method has improved the accuracy of the CMIP5 GCM’s LE simulation with a decrease in the averaged root-mean-square error (RMSE) by more than 3 W/m2 when compared to the simple model averaging (SMA) method and individual GCMs. We found an increasing trend in the BMA-based global terrestrial LE (slope of 0.018 W/m2 yr−1, p < 0.05) during the period 1970–2005. This variation may be attributed directly to the inter-annual variations in air temperature (Ta), surface incident solar radiation (Rs) and precipitation (P). However, our study highlights a large difference from previous studies in a continuous increasing trend after 1998, which may be caused by the combined effects of the variations of Rs, Ta, and P on LE for different models on these time scales. This study provides corrected-modeling evidence for an accelerated global water cycle with climate change.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverAgricultural and Forest MeteorologyArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2016.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2016License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverAgricultural and Forest MeteorologyArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2016.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:IOP Publishing Peilei Fan; Jiquan Chen; Zutao Ouyang; Pavel Groisman; Tatiana Loboda; Garik Gutman; Alexander V Prishchepov; Anna Kvashnina; Joseph Messina; Nathan Moore; Soe W Myint; Jiaguo Qi;Spanning a vast territory of approximately 13 million km ^2 , Asian Russia was home to 38 million people in 2016. In an effort to synthesize data and knowledge regarding urbanization and sustainable development in Asian Russia in the context of socioeconomic transformation following the breakup of the Soviet Union in 1990, we quantified the spatiotemporal changes of urban dynamics using satellite imagery and explored the interrelationships between urbanization and sustainability. We then developed a sustainability index, complemented with structural equation modeling, for a comprehensive analysis of their dynamics. We chose six case cities, i.e., Yekaterinburg, Novosibirsk, Krasnoyarsk, Omsk, Irkutsk, and Khabarovsk, as representatives of large cities to investigate whether large cities are in sync with the region in terms of population dynamics, urbanization, and sustainability. Our major findings include the following. First, Asian Russia experienced enhanced economic growth despite the declining population. Furthermore, our case cities showed a general positive trend for population dynamics and urbanization as all except Irkutsk experienced population increases and all expanded their urban built-up areas, ranging from 13% to 16% from 1990 to 2014. Second, Asian Russia and its three federal districts have improved their sustainability and levels of economic development, environmental conditions, and social development. Although both regional sustainability and economic development experienced a serious dip in the 1990s, environmental conditions and social development continuously improved from 1990 to 2014, with social development particularly improving after 1995. Third, in terms of the relationships between urbanization and sustainability, economic development appeared as an important driver of urbanization, social development, and environmental degradation in Asian Russia, with economic development having a stronger influence on urbanization than on social development or environmental degradation.
Environmental Resear... arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aadbf8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Copenhagen University Research Information SystemArticle . 2018Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aadbf8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu