- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- Energy Research
- 12. Responsible consumption
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Wayes Tushar; M. Imran Azim; Mollah Rezaul Alam; Chau Yuen; Rahul Sharma; Tapan Saha; H. Vincent Poor;Despite the world's relentless efforts to achieve the United Nations' sustainable energy target by 2030, the current pace of progress is insufficient to reach the objective. Continuous support and development across various domains of the energy sector are required to achieve sustainability targets. This article focuses on the potential of dynamic operating limits to drive the world's sustainability efforts, specifically in addressing critical challenges of distribution networks of the power system by progressively setting the nodal limits on the active and reactive power injection into the distribution network based on data-driven computer simulation. While the importance of dynamic operating limits has recently been recognized, its crucial role in the residential energy sustainability sector, which requires a significant push to provide universal energy access by 2030, has not been adequately investigated. This perspective explains the fundamental concepts and benefits of dynamic operating limits in encouraging the adoption of distributed renewable energy resources in the residential sector to support the United Nation's sustainable energy objective. Additionally, we discuss the limitations of computing this limit and applying it to the electricity network and some motivational models that can encourage electricity customers to come forward to address the challenges. Finally, we explore new research and implementation prospects for designing comprehensive, dependable, accountable, and complementary dynamic operating limit programs to accelerate the attainment of sustainable energy targets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2023.107194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2023.107194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2018 AustraliaPublisher:Applied Energy Innovation Institute (AEii) Wayes Tushar; Tapan Kumar Saha; Chau Yuen; Paul Liddell; Richard Bean; H. Vincent Poor;This paper explores the feasibility of social cooperation between prosumers within an energy network in establishing their sustainable participation in peer-to-peer (P2P) energy trading. In particular, a canonical coalition game (CCG) is utilized to propose a P2P energy trading scheme, in which a set of participating prosumers form a coalition group to trade their energy, if there is any, with one another. By exploring the concept of the core of the designed CCG framework, the mid-market rate is utilized as a pricing mechanism of the proposed P2P trading to confirm the stability of the coalition as well as to guarantee the benefit to the prosumers for forming the social coalition. The paper further introduces the motivational psychology models that are relevant to the proposed P2P scheme and it is shown that the outcomes of proposed P2P energy trading scheme satisfy the discussed models. Consequently, it is proven that the proposed scheme is consumer-centric that has the potential to corroborate sustainable prosumers participation in P2P energy trading. Finally, some numerical examples are provided to demonstrate the beneficial properties of the proposed scheme. 11 pages, 3 figures, 1 table
http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46855/2020.06.30.15.16.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 174 citations 174 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46855/2020.06.30.15.16.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Tushar, Wayes; Lan, Lan; Withanage, Chathura; Sng, Hui En Karen; Yuen, Chau; Wood, Kristin L.; Saha, Tapan Kumar;This paper studies an interdisciplinary approach for improving building energy efficiency. In particular, the proposed approach integrates design innovation (DI) techniques, existing energy audit methods (EAM), and data-driven & engineering modeling techniques (DET) in the process of sustainable smart energy system design. From this perspective, DI methods are extended and modified to suit the content of sustainable smart energy system design and a DI 4D (Discover, Define, Develop and Deliver) framework is introduced to guide the design process. The motivation behind and the implementation procedure of each of the DI phases is explained separately, and the process of integrating DI methods, EAM and DET in developing a sustainable smart energy system is demonstrated. The proposed approach is deployed within the campus of a tertiary education institution to show its effectiveness in designing a smart sustainable energy system.
Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012Publisher:IEEE Authors: E. Cabrero; N. Plant; Tapan Kumar Saha;Greenhouse Gas Dashboard is a web tool that integrates several carbon pollution-monitoring requirements. Performance Engineering is a process of aiming to improve operation efficiency above pure income from generation. Greenhouse Gas Dashboard allows performance engineers; managers and employees to easily enter, monitor and report power plant emissions. Coal fired and Gas fired power stations are supported by Dashboard in conjunction with SentientSystem resource servers. Researching Australian and International standards on carbon reduction and energy efficiency, common components were extracted that are used in the dashboard. Uncertainty analysis is conducted on the multiple pillar calculation method to lower and verify error margins. Once implemented in an excel spreadsheet with test data, the final prototype has been developed into a web server and hence accessed as a web tool. This prototype will then be integrated into the SentientSystemTM owned by Synergetic Engineering.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2012.6344776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2012.6344776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Wayes Tushar; M. Imran Azim; Mollah Rezaul Alam; Chau Yuen; Rahul Sharma; Tapan Saha; H. Vincent Poor;Despite the world's relentless efforts to achieve the United Nations' sustainable energy target by 2030, the current pace of progress is insufficient to reach the objective. Continuous support and development across various domains of the energy sector are required to achieve sustainability targets. This article focuses on the potential of dynamic operating limits to drive the world's sustainability efforts, specifically in addressing critical challenges of distribution networks of the power system by progressively setting the nodal limits on the active and reactive power injection into the distribution network based on data-driven computer simulation. While the importance of dynamic operating limits has recently been recognized, its crucial role in the residential energy sustainability sector, which requires a significant push to provide universal energy access by 2030, has not been adequately investigated. This perspective explains the fundamental concepts and benefits of dynamic operating limits in encouraging the adoption of distributed renewable energy resources in the residential sector to support the United Nation's sustainable energy objective. Additionally, we discuss the limitations of computing this limit and applying it to the electricity network and some motivational models that can encourage electricity customers to come forward to address the challenges. Finally, we explore new research and implementation prospects for designing comprehensive, dependable, accountable, and complementary dynamic operating limit programs to accelerate the attainment of sustainable energy targets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2023.107194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2023.107194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2018 AustraliaPublisher:Applied Energy Innovation Institute (AEii) Wayes Tushar; Tapan Kumar Saha; Chau Yuen; Paul Liddell; Richard Bean; H. Vincent Poor;This paper explores the feasibility of social cooperation between prosumers within an energy network in establishing their sustainable participation in peer-to-peer (P2P) energy trading. In particular, a canonical coalition game (CCG) is utilized to propose a P2P energy trading scheme, in which a set of participating prosumers form a coalition group to trade their energy, if there is any, with one another. By exploring the concept of the core of the designed CCG framework, the mid-market rate is utilized as a pricing mechanism of the proposed P2P trading to confirm the stability of the coalition as well as to guarantee the benefit to the prosumers for forming the social coalition. The paper further introduces the motivational psychology models that are relevant to the proposed P2P scheme and it is shown that the outcomes of proposed P2P energy trading scheme satisfy the discussed models. Consequently, it is proven that the proposed scheme is consumer-centric that has the potential to corroborate sustainable prosumers participation in P2P energy trading. Finally, some numerical examples are provided to demonstrate the beneficial properties of the proposed scheme. 11 pages, 3 figures, 1 table
http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46855/2020.06.30.15.16.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 174 citations 174 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert http://arxiv.org/pdf... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46855/2020.06.30.15.16.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Tushar, Wayes; Lan, Lan; Withanage, Chathura; Sng, Hui En Karen; Yuen, Chau; Wood, Kristin L.; Saha, Tapan Kumar;This paper studies an interdisciplinary approach for improving building energy efficiency. In particular, the proposed approach integrates design innovation (DI) techniques, existing energy audit methods (EAM), and data-driven & engineering modeling techniques (DET) in the process of sustainable smart energy system design. From this perspective, DI methods are extended and modified to suit the content of sustainable smart energy system design and a DI 4D (Discover, Define, Develop and Deliver) framework is introduced to guide the design process. The motivation behind and the implementation procedure of each of the DI phases is explained separately, and the process of integrating DI methods, EAM and DET in developing a sustainable smart energy system is demonstrated. The proposed approach is deployed within the campus of a tertiary education institution to show its effectiveness in designing a smart sustainable energy system.
Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012Publisher:IEEE Authors: E. Cabrero; N. Plant; Tapan Kumar Saha;Greenhouse Gas Dashboard is a web tool that integrates several carbon pollution-monitoring requirements. Performance Engineering is a process of aiming to improve operation efficiency above pure income from generation. Greenhouse Gas Dashboard allows performance engineers; managers and employees to easily enter, monitor and report power plant emissions. Coal fired and Gas fired power stations are supported by Dashboard in conjunction with SentientSystem resource servers. Researching Australian and International standards on carbon reduction and energy efficiency, common components were extracted that are used in the dashboard. Uncertainty analysis is conducted on the multiple pillar calculation method to lower and verify error margins. Once implemented in an excel spreadsheet with test data, the final prototype has been developed into a web server and hence accessed as a web tool. This prototype will then be integrated into the SentientSystemTM owned by Synergetic Engineering.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2012.6344776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm.2012.6344776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu