- home
- Advanced Search
- Energy Research
- 13. Climate action
- Energy Research
- 13. Climate action
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCXue Wang; Ziyun Wang; Tao-Tao Zhuang; Cao-Thang Dinh; Jun Li; Dae-Hyun Nam; Fengwang Li; Chun-Wei Huang; Chih-Shan Tan; Zitao Chen; Miaofang Chi; Christine M. Gabardo; Ali Seifitokaldani; Petar Todorović; Andrew Proppe; Yuanjie Pang; Ahmad R. Kirmani; Yuhang Wang; Alexander H. Ip; Lee J. Richter; Benjamin Scheffel; Aoni Xu; Shen-Chuan Lo; Shana O. Kelley; David Sinton; Edward H. Sargent;AbstractThe electroreduction of C1 feedgas to high-energy-density fuels provides an attractive avenue to the storage of renewable electricity. Much progress has been made to improve selectivity to C1 and C2 products, however, the selectivity to desirable high-energy-density C3 products remains relatively low. We reason that C3 electrosynthesis relies on a higher-order reaction pathway that requires the formation of multiple carbon-carbon (C-C) bonds, and thus pursue a strategy explicitly designed to couple C2 with C1 intermediates. We develop an approach wherein neighboring copper atoms having distinct electronic structures interact with two adsorbates to catalyze an asymmetric reaction. We achieve a record n-propanol Faradaic efficiency (FE) of (33 ± 1)% with a conversion rate of (4.5 ± 0.1) mA cm−2, and a record n-propanol cathodic energy conversion efficiency (EEcathodic half-cell) of 21%. The FE and EEcathodic half-cell represent a 1.3× improvement relative to previously-published CO-to-n-propanol electroreduction reports.
University of Toront... arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/98705Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Toront... arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/98705Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCXue Wang; Ziyun Wang; Tao-Tao Zhuang; Cao-Thang Dinh; Jun Li; Dae-Hyun Nam; Fengwang Li; Chun-Wei Huang; Chih-Shan Tan; Zitao Chen; Miaofang Chi; Christine M. Gabardo; Ali Seifitokaldani; Petar Todorović; Andrew Proppe; Yuanjie Pang; Ahmad R. Kirmani; Yuhang Wang; Alexander H. Ip; Lee J. Richter; Benjamin Scheffel; Aoni Xu; Shen-Chuan Lo; Shana O. Kelley; David Sinton; Edward H. Sargent;AbstractThe electroreduction of C1 feedgas to high-energy-density fuels provides an attractive avenue to the storage of renewable electricity. Much progress has been made to improve selectivity to C1 and C2 products, however, the selectivity to desirable high-energy-density C3 products remains relatively low. We reason that C3 electrosynthesis relies on a higher-order reaction pathway that requires the formation of multiple carbon-carbon (C-C) bonds, and thus pursue a strategy explicitly designed to couple C2 with C1 intermediates. We develop an approach wherein neighboring copper atoms having distinct electronic structures interact with two adsorbates to catalyze an asymmetric reaction. We achieve a record n-propanol Faradaic efficiency (FE) of (33 ± 1)% with a conversion rate of (4.5 ± 0.1) mA cm−2, and a record n-propanol cathodic energy conversion efficiency (EEcathodic half-cell) of 21%. The FE and EEcathodic half-cell represent a 1.3× improvement relative to previously-published CO-to-n-propanol electroreduction reports.
University of Toront... arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/98705Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Toront... arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/98705Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCXue Wang; Ziyun Wang; Tao-Tao Zhuang; Cao-Thang Dinh; Jun Li; Dae-Hyun Nam; Fengwang Li; Chun-Wei Huang; Chih-Shan Tan; Zitao Chen; Miaofang Chi; Christine M. Gabardo; Ali Seifitokaldani; Petar Todorović; Andrew Proppe; Yuanjie Pang; Ahmad R. Kirmani; Yuhang Wang; Alexander H. Ip; Lee J. Richter; Benjamin Scheffel; Aoni Xu; Shen-Chuan Lo; Shana O. Kelley; David Sinton; Edward H. Sargent;AbstractThe electroreduction of C1 feedgas to high-energy-density fuels provides an attractive avenue to the storage of renewable electricity. Much progress has been made to improve selectivity to C1 and C2 products, however, the selectivity to desirable high-energy-density C3 products remains relatively low. We reason that C3 electrosynthesis relies on a higher-order reaction pathway that requires the formation of multiple carbon-carbon (C-C) bonds, and thus pursue a strategy explicitly designed to couple C2 with C1 intermediates. We develop an approach wherein neighboring copper atoms having distinct electronic structures interact with two adsorbates to catalyze an asymmetric reaction. We achieve a record n-propanol Faradaic efficiency (FE) of (33 ± 1)% with a conversion rate of (4.5 ± 0.1) mA cm−2, and a record n-propanol cathodic energy conversion efficiency (EEcathodic half-cell) of 21%. The FE and EEcathodic half-cell represent a 1.3× improvement relative to previously-published CO-to-n-propanol electroreduction reports.
University of Toront... arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/98705Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Toront... arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/98705Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCXue Wang; Ziyun Wang; Tao-Tao Zhuang; Cao-Thang Dinh; Jun Li; Dae-Hyun Nam; Fengwang Li; Chun-Wei Huang; Chih-Shan Tan; Zitao Chen; Miaofang Chi; Christine M. Gabardo; Ali Seifitokaldani; Petar Todorović; Andrew Proppe; Yuanjie Pang; Ahmad R. Kirmani; Yuhang Wang; Alexander H. Ip; Lee J. Richter; Benjamin Scheffel; Aoni Xu; Shen-Chuan Lo; Shana O. Kelley; David Sinton; Edward H. Sargent;AbstractThe electroreduction of C1 feedgas to high-energy-density fuels provides an attractive avenue to the storage of renewable electricity. Much progress has been made to improve selectivity to C1 and C2 products, however, the selectivity to desirable high-energy-density C3 products remains relatively low. We reason that C3 electrosynthesis relies on a higher-order reaction pathway that requires the formation of multiple carbon-carbon (C-C) bonds, and thus pursue a strategy explicitly designed to couple C2 with C1 intermediates. We develop an approach wherein neighboring copper atoms having distinct electronic structures interact with two adsorbates to catalyze an asymmetric reaction. We achieve a record n-propanol Faradaic efficiency (FE) of (33 ± 1)% with a conversion rate of (4.5 ± 0.1) mA cm−2, and a record n-propanol cathodic energy conversion efficiency (EEcathodic half-cell) of 21%. The FE and EEcathodic half-cell represent a 1.3× improvement relative to previously-published CO-to-n-propanol electroreduction reports.
University of Toront... arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/98705Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Toront... arrow_drop_down University of Toronto: Research Repository T-SpaceArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1807/98705Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-13190-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu