- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:American Institute of Mathematical Sciences (AIMS) Authors: Meraj, Afshin; Shoa, Tina; Naieni Fard, Fereshteh Sadeghi; Mina, Hassan;<abstract> <p>As electric vehicles (EVs) continue to advance, there is a growing emphasis on sustainability, particularly in the area of effectively managing the lifecycle of EV batteries. In this study, an efficient and novel optimization model was proposed for designing a circular supply chain network for EV batteries. In doing so, a comprehensive, bi-objective, mixed-integer linear programming model was employed. It is worth noting that the current model outlined in this paper involved both forward and reverse flows, illustrating the process of converting used batteries into their constituent materials or repurposing them for various applications. In line with the circular economy concept, the current model also minimized the total costs and carbon emission to develop an inclusive optimization framework. The LP-metric method was applied to solve the presented bi-objective optimization model. We simulated six problems with different sizes using data and experts' knowledge of a lithium-ion battery manufacturing industry in Canada, and evaluated the performance of the proposed model by simulated data. The results of the sensitivity analysis process of the objective functions coefficients showed that there was a balance between the two objective functions, and the costs should be increased to achieve lower emissions. In addition, the demand sensitivity analysis revealed that the increase in demand directly affects the increase in costs and emissions.</p> </abstract>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/environsci.2024013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/environsci.2024013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:American Institute of Mathematical Sciences (AIMS) Authors: Meraj, Afshin; Shoa, Tina; Naieni Fard, Fereshteh Sadeghi; Mina, Hassan;<abstract> <p>As electric vehicles (EVs) continue to advance, there is a growing emphasis on sustainability, particularly in the area of effectively managing the lifecycle of EV batteries. In this study, an efficient and novel optimization model was proposed for designing a circular supply chain network for EV batteries. In doing so, a comprehensive, bi-objective, mixed-integer linear programming model was employed. It is worth noting that the current model outlined in this paper involved both forward and reverse flows, illustrating the process of converting used batteries into their constituent materials or repurposing them for various applications. In line with the circular economy concept, the current model also minimized the total costs and carbon emission to develop an inclusive optimization framework. The LP-metric method was applied to solve the presented bi-objective optimization model. We simulated six problems with different sizes using data and experts' knowledge of a lithium-ion battery manufacturing industry in Canada, and evaluated the performance of the proposed model by simulated data. The results of the sensitivity analysis process of the objective functions coefficients showed that there was a balance between the two objective functions, and the costs should be increased to achieve lower emissions. In addition, the demand sensitivity analysis revealed that the increase in demand directly affects the increase in costs and emissions.</p> </abstract>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/environsci.2024013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/environsci.2024013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu