- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityAuthors: Nadine Engbersen; Laura Stefan; Rob W. Brooker; Christian Schöb;AbstractIncreasing biodiversity generally enhances productivity through selection and complementarity effects not only in natural, but also in agricultural, systems. However, the quest to explain why diverse cropping systems are more productive than monocultures remains a central goal in agricultural science. In a mesocosm experiment, we constructed monocultures, two‐ and four‐species mixtures from eight crop species with or without fertilizer and both in temperate Switzerland and dry, Mediterranean Spain. We measured physical factors and plant traits and related these in structural equation models to selection and complementarity effects to explain seed yield differences between monocultures and mixtures. Increased crop diversity increased seed yield in Switzerland. This positive biodiversity effect was driven to almost the same extent by selection and complementarity effects, which increased with plant height and specific leaf area (SLA), respectively. Also, ecological processes driving seed yield increases from monocultures to mixtures differed from those responsible for seed yield increases through the diversification of mixtures from two to four species. Whereas selection effects were mainly driven by one species, complementarity effects were linked to larger leaf area per unit leaf weight. Seed yield increases due to mixture diversification were driven only by complementarity effects and were not mediated through the measured traits, suggesting that ecological processes beyond those measured in this study were responsible for positive diversity effects on yield beyond two‐species mixtures. By understanding the drivers of positive biodiversity–productivity relationships, we can improve our ability to predict species combinations that enhance ecosystem functioning and can promote sustainable agricultural production.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityAuthors: Nadine Engbersen; Laura Stefan; Rob W. Brooker; Christian Schöb;AbstractIncreasing biodiversity generally enhances productivity through selection and complementarity effects not only in natural, but also in agricultural, systems. However, the quest to explain why diverse cropping systems are more productive than monocultures remains a central goal in agricultural science. In a mesocosm experiment, we constructed monocultures, two‐ and four‐species mixtures from eight crop species with or without fertilizer and both in temperate Switzerland and dry, Mediterranean Spain. We measured physical factors and plant traits and related these in structural equation models to selection and complementarity effects to explain seed yield differences between monocultures and mixtures. Increased crop diversity increased seed yield in Switzerland. This positive biodiversity effect was driven to almost the same extent by selection and complementarity effects, which increased with plant height and specific leaf area (SLA), respectively. Also, ecological processes driving seed yield increases from monocultures to mixtures differed from those responsible for seed yield increases through the diversification of mixtures from two to four species. Whereas selection effects were mainly driven by one species, complementarity effects were linked to larger leaf area per unit leaf weight. Seed yield increases due to mixture diversification were driven only by complementarity effects and were not mediated through the measured traits, suggesting that ecological processes beyond those measured in this study were responsible for positive diversity effects on yield beyond two‐species mixtures. By understanding the drivers of positive biodiversity–productivity relationships, we can improve our ability to predict species combinations that enhance ecosystem functioning and can promote sustainable agricultural production.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:Wiley Funded by:SNSF | Timescales of changing sp...SNSF| Timescales of changing species interactions under warming climateAuthors: Sarah K. Richman; Jonathan M. Levine; Laura Stefan; Christopher A. Johnson;pmid: 32061109
AbstractClimate change is driving species' range shifts, which are in turn disrupting species interactions due to species‐specific differences in their abilities to migrate in response to climate. We evaluated the consequences of asynchronous range shifts in an alpine plant–pollinator community by transplanting replicated alpine meadow turfs downslope along an elevational gradient thereby introducing them to warmer climates and novel plant and pollinator communities. We asked how these novel plant–pollinator interactions affect plant reproduction. We found that pollinator communities differed substantially across the elevation/temperature gradient, suggesting that these plants will likely interact with different pollinator communities with warming climate. Contrary to the expectation that floral visitation would increase monotonically with warmer temperatures at lower elevations, visitation rate to the transplanted communities peaked under intermediate warming at midelevation sites. In contrast, visitation rate generally increased with temperature for the local, lower elevation plant communities surrounding the experimental alpine turfs. For two of three focal plant species in the transplanted high‐elevation community, reproduction declined at warmer sites. For these species, reproduction appears to be dependent on pollinator identity such that reduced reproduction may be attributable to decreased visitation from key pollinator species, such as bumble bees, at warmer sites. Reproduction in the third focal species appears to be primarily driven by overall pollinator visitation rate, regardless of pollinator identity. Taken together, the results suggest climate warming can indirectly affect plant reproduction via changes in plant–pollinator interactions. More broadly, the experiment provides a case study for predicting the outcome of novel species interactions formed under changing climates.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:Wiley Funded by:SNSF | Timescales of changing sp...SNSF| Timescales of changing species interactions under warming climateAuthors: Sarah K. Richman; Jonathan M. Levine; Laura Stefan; Christopher A. Johnson;pmid: 32061109
AbstractClimate change is driving species' range shifts, which are in turn disrupting species interactions due to species‐specific differences in their abilities to migrate in response to climate. We evaluated the consequences of asynchronous range shifts in an alpine plant–pollinator community by transplanting replicated alpine meadow turfs downslope along an elevational gradient thereby introducing them to warmer climates and novel plant and pollinator communities. We asked how these novel plant–pollinator interactions affect plant reproduction. We found that pollinator communities differed substantially across the elevation/temperature gradient, suggesting that these plants will likely interact with different pollinator communities with warming climate. Contrary to the expectation that floral visitation would increase monotonically with warmer temperatures at lower elevations, visitation rate to the transplanted communities peaked under intermediate warming at midelevation sites. In contrast, visitation rate generally increased with temperature for the local, lower elevation plant communities surrounding the experimental alpine turfs. For two of three focal plant species in the transplanted high‐elevation community, reproduction declined at warmer sites. For these species, reproduction appears to be dependent on pollinator identity such that reduced reproduction may be attributable to decreased visitation from key pollinator species, such as bumble bees, at warmer sites. Reproduction in the third focal species appears to be primarily driven by overall pollinator visitation rate, regardless of pollinator identity. Taken together, the results suggest climate warming can indirectly affect plant reproduction via changes in plant–pollinator interactions. More broadly, the experiment provides a case study for predicting the outcome of novel species interactions formed under changing climates.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jul 2021 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityLaura Stefan; Bernhard Schmid; Bernhard Schmid; Nadine Engbersen; Christian Schöb; Jianguo Chen; Jianguo Chen; Hang Sun;Resource allocation to reproduction is a critical trait for plant fitness1,2. This trait, called harvest index in the agricultural context3-5, determines how plant biomass is converted to seed yield and consequently financial revenue from numerous major staple crops. While plant diversity has been demonstrated to increase plant biomass6-8, plant diversity effects on seed yield of crops are ambiguous9 and dependent on the production syndrome10. This discrepancy might be explained through changes in the proportion of resources invested in reproduction in response to changes in plant diversity, namely through changes in species interactions and microenvironmental conditions11-14. Here, we show that increasing crop plant diversity from monocultures over two- to four-species mixtures increased annual primary productivity, resulting in overall higher plant biomass and, to a lesser extent, higher seed yield in mixtures compared with monocultures. The difference between the two responses to diversity was due to a reduced harvest index of the eight tested crop species in mixtures, possibly because their common cultivars have been bred for maximum performance in monoculture. While crop diversification provides a sustainable measure of agricultural intensification15, the use of currently available cultivars may compromise larger gains in seed yield. We therefore advocate regional breeding programmes for crop varieties to be used in mixtures that should exploit complementarity16 among crop species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jul 2021 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityLaura Stefan; Bernhard Schmid; Bernhard Schmid; Nadine Engbersen; Christian Schöb; Jianguo Chen; Jianguo Chen; Hang Sun;Resource allocation to reproduction is a critical trait for plant fitness1,2. This trait, called harvest index in the agricultural context3-5, determines how plant biomass is converted to seed yield and consequently financial revenue from numerous major staple crops. While plant diversity has been demonstrated to increase plant biomass6-8, plant diversity effects on seed yield of crops are ambiguous9 and dependent on the production syndrome10. This discrepancy might be explained through changes in the proportion of resources invested in reproduction in response to changes in plant diversity, namely through changes in species interactions and microenvironmental conditions11-14. Here, we show that increasing crop plant diversity from monocultures over two- to four-species mixtures increased annual primary productivity, resulting in overall higher plant biomass and, to a lesser extent, higher seed yield in mixtures compared with monocultures. The difference between the two responses to diversity was due to a reduced harvest index of the eight tested crop species in mixtures, possibly because their common cultivars have been bred for maximum performance in monoculture. While crop diversification provides a sustainable measure of agricultural intensification15, the use of currently available cultivars may compromise larger gains in seed yield. We therefore advocate regional breeding programmes for crop varieties to be used in mixtures that should exploit complementarity16 among crop species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityAuthors: Nadine Engbersen; Laura Stefan; Rob W. Brooker; Christian Schöb;AbstractIncreasing biodiversity generally enhances productivity through selection and complementarity effects not only in natural, but also in agricultural, systems. However, the quest to explain why diverse cropping systems are more productive than monocultures remains a central goal in agricultural science. In a mesocosm experiment, we constructed monocultures, two‐ and four‐species mixtures from eight crop species with or without fertilizer and both in temperate Switzerland and dry, Mediterranean Spain. We measured physical factors and plant traits and related these in structural equation models to selection and complementarity effects to explain seed yield differences between monocultures and mixtures. Increased crop diversity increased seed yield in Switzerland. This positive biodiversity effect was driven to almost the same extent by selection and complementarity effects, which increased with plant height and specific leaf area (SLA), respectively. Also, ecological processes driving seed yield increases from monocultures to mixtures differed from those responsible for seed yield increases through the diversification of mixtures from two to four species. Whereas selection effects were mainly driven by one species, complementarity effects were linked to larger leaf area per unit leaf weight. Seed yield increases due to mixture diversification were driven only by complementarity effects and were not mediated through the measured traits, suggesting that ecological processes beyond those measured in this study were responsible for positive diversity effects on yield beyond two‐species mixtures. By understanding the drivers of positive biodiversity–productivity relationships, we can improve our ability to predict species combinations that enhance ecosystem functioning and can promote sustainable agricultural production.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Wiley Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityAuthors: Nadine Engbersen; Laura Stefan; Rob W. Brooker; Christian Schöb;AbstractIncreasing biodiversity generally enhances productivity through selection and complementarity effects not only in natural, but also in agricultural, systems. However, the quest to explain why diverse cropping systems are more productive than monocultures remains a central goal in agricultural science. In a mesocosm experiment, we constructed monocultures, two‐ and four‐species mixtures from eight crop species with or without fertilizer and both in temperate Switzerland and dry, Mediterranean Spain. We measured physical factors and plant traits and related these in structural equation models to selection and complementarity effects to explain seed yield differences between monocultures and mixtures. Increased crop diversity increased seed yield in Switzerland. This positive biodiversity effect was driven to almost the same extent by selection and complementarity effects, which increased with plant height and specific leaf area (SLA), respectively. Also, ecological processes driving seed yield increases from monocultures to mixtures differed from those responsible for seed yield increases through the diversification of mixtures from two to four species. Whereas selection effects were mainly driven by one species, complementarity effects were linked to larger leaf area per unit leaf weight. Seed yield increases due to mixture diversification were driven only by complementarity effects and were not mediated through the measured traits, suggesting that ecological processes beyond those measured in this study were responsible for positive diversity effects on yield beyond two‐species mixtures. By understanding the drivers of positive biodiversity–productivity relationships, we can improve our ability to predict species combinations that enhance ecosystem functioning and can promote sustainable agricultural production.
Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:Wiley Funded by:SNSF | Timescales of changing sp...SNSF| Timescales of changing species interactions under warming climateAuthors: Sarah K. Richman; Jonathan M. Levine; Laura Stefan; Christopher A. Johnson;pmid: 32061109
AbstractClimate change is driving species' range shifts, which are in turn disrupting species interactions due to species‐specific differences in their abilities to migrate in response to climate. We evaluated the consequences of asynchronous range shifts in an alpine plant–pollinator community by transplanting replicated alpine meadow turfs downslope along an elevational gradient thereby introducing them to warmer climates and novel plant and pollinator communities. We asked how these novel plant–pollinator interactions affect plant reproduction. We found that pollinator communities differed substantially across the elevation/temperature gradient, suggesting that these plants will likely interact with different pollinator communities with warming climate. Contrary to the expectation that floral visitation would increase monotonically with warmer temperatures at lower elevations, visitation rate to the transplanted communities peaked under intermediate warming at midelevation sites. In contrast, visitation rate generally increased with temperature for the local, lower elevation plant communities surrounding the experimental alpine turfs. For two of three focal plant species in the transplanted high‐elevation community, reproduction declined at warmer sites. For these species, reproduction appears to be dependent on pollinator identity such that reduced reproduction may be attributable to decreased visitation from key pollinator species, such as bumble bees, at warmer sites. Reproduction in the third focal species appears to be primarily driven by overall pollinator visitation rate, regardless of pollinator identity. Taken together, the results suggest climate warming can indirectly affect plant reproduction via changes in plant–pollinator interactions. More broadly, the experiment provides a case study for predicting the outcome of novel species interactions formed under changing climates.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 SwitzerlandPublisher:Wiley Funded by:SNSF | Timescales of changing sp...SNSF| Timescales of changing species interactions under warming climateAuthors: Sarah K. Richman; Jonathan M. Levine; Laura Stefan; Christopher A. Johnson;pmid: 32061109
AbstractClimate change is driving species' range shifts, which are in turn disrupting species interactions due to species‐specific differences in their abilities to migrate in response to climate. We evaluated the consequences of asynchronous range shifts in an alpine plant–pollinator community by transplanting replicated alpine meadow turfs downslope along an elevational gradient thereby introducing them to warmer climates and novel plant and pollinator communities. We asked how these novel plant–pollinator interactions affect plant reproduction. We found that pollinator communities differed substantially across the elevation/temperature gradient, suggesting that these plants will likely interact with different pollinator communities with warming climate. Contrary to the expectation that floral visitation would increase monotonically with warmer temperatures at lower elevations, visitation rate to the transplanted communities peaked under intermediate warming at midelevation sites. In contrast, visitation rate generally increased with temperature for the local, lower elevation plant communities surrounding the experimental alpine turfs. For two of three focal plant species in the transplanted high‐elevation community, reproduction declined at warmer sites. For these species, reproduction appears to be dependent on pollinator identity such that reduced reproduction may be attributable to decreased visitation from key pollinator species, such as bumble bees, at warmer sites. Reproduction in the third focal species appears to be primarily driven by overall pollinator visitation rate, regardless of pollinator identity. Taken together, the results suggest climate warming can indirectly affect plant reproduction via changes in plant–pollinator interactions. More broadly, the experiment provides a case study for predicting the outcome of novel species interactions formed under changing climates.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jul 2021 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityLaura Stefan; Bernhard Schmid; Bernhard Schmid; Nadine Engbersen; Christian Schöb; Jianguo Chen; Jianguo Chen; Hang Sun;Resource allocation to reproduction is a critical trait for plant fitness1,2. This trait, called harvest index in the agricultural context3-5, determines how plant biomass is converted to seed yield and consequently financial revenue from numerous major staple crops. While plant diversity has been demonstrated to increase plant biomass6-8, plant diversity effects on seed yield of crops are ambiguous9 and dependent on the production syndrome10. This discrepancy might be explained through changes in the proportion of resources invested in reproduction in response to changes in plant diversity, namely through changes in species interactions and microenvironmental conditions11-14. Here, we show that increasing crop plant diversity from monocultures over two- to four-species mixtures increased annual primary productivity, resulting in overall higher plant biomass and, to a lesser extent, higher seed yield in mixtures compared with monocultures. The difference between the two responses to diversity was due to a reduced harvest index of the eight tested crop species in mixtures, possibly because their common cultivars have been bred for maximum performance in monoculture. While crop diversification provides a sustainable measure of agricultural intensification15, the use of currently available cultivars may compromise larger gains in seed yield. We therefore advocate regional breeding programmes for crop varieties to be used in mixtures that should exploit complementarity16 among crop species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jul 2021 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Ecology and evolution in ...SNSF| Ecology and evolution in practice: A plant-plant interaction-based approach to the evolution of biodiversity effects on productivityLaura Stefan; Bernhard Schmid; Bernhard Schmid; Nadine Engbersen; Christian Schöb; Jianguo Chen; Jianguo Chen; Hang Sun;Resource allocation to reproduction is a critical trait for plant fitness1,2. This trait, called harvest index in the agricultural context3-5, determines how plant biomass is converted to seed yield and consequently financial revenue from numerous major staple crops. While plant diversity has been demonstrated to increase plant biomass6-8, plant diversity effects on seed yield of crops are ambiguous9 and dependent on the production syndrome10. This discrepancy might be explained through changes in the proportion of resources invested in reproduction in response to changes in plant diversity, namely through changes in species interactions and microenvironmental conditions11-14. Here, we show that increasing crop plant diversity from monocultures over two- to four-species mixtures increased annual primary productivity, resulting in overall higher plant biomass and, to a lesser extent, higher seed yield in mixtures compared with monocultures. The difference between the two responses to diversity was due to a reduced harvest index of the eight tested crop species in mixtures, possibly because their common cultivars have been bred for maximum performance in monoculture. While crop diversification provides a sustainable measure of agricultural intensification15, the use of currently available cultivars may compromise larger gains in seed yield. We therefore advocate regional breeding programmes for crop varieties to be used in mixtures that should exploit complementarity16 among crop species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41477-021-00948-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu