- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Proceedings of the National Academy of Sciences Authors: Aubrey Streit Krug; Emily B. M. Drummond; David L. Van Tassel; Emily J. Warschefsky;Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene—the process of domestication can help build them.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2205769120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2205769120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Proceedings of the National Academy of Sciences Authors: Aubrey Streit Krug; Emily B. M. Drummond; David L. Van Tassel; Emily J. Warschefsky;Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene—the process of domestication can help build them.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2205769120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2205769120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ArgentinaPublisher:MDPI AG Authors: M. Turner; Damian Ravetta; David Van Tassel;doi: 10.3390/su10030696
handle: 11336/96766
New crops with greater capacity for delivering ecosystem services are needed to increase agricultural sustainability. However, even in these crops, seed yield is usually the main criteria for grain domestication. This focus on yield can cause unintended structural and functional changes. Leaves of selected plants tend to be more vulnerable to infection, which can reduce performance, assimilates, and ultimately yield. Our objectives were to determine the impact of rust (caused by Puccinia silphii) on yield and leaf function in selected Silphium integrifolium (Asteraceae) plants. We tested the effect of a fungicide treatment on rust severity and yield, compared the rust infection of individuals in a population selected for yield, and related this to chemical changes at the leaf level. We also estimated heritability for rust resistance. We found that productivity indicators (head number and weight, leaf weight) and leaf processes (photosynthetic capacity, water use efficiency) were reduced when silphium leaves and stems were more heavily infected by P. silphii. Leaf resin content increased when susceptible plants were infected. Fungicide treatments were effective at reducing rust infection severity, but were ineffective at preventing yield losses. We propose that disease resistance should be included early in the selection process of new perennial crops.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ArgentinaPublisher:MDPI AG Authors: M. Turner; Damian Ravetta; David Van Tassel;doi: 10.3390/su10030696
handle: 11336/96766
New crops with greater capacity for delivering ecosystem services are needed to increase agricultural sustainability. However, even in these crops, seed yield is usually the main criteria for grain domestication. This focus on yield can cause unintended structural and functional changes. Leaves of selected plants tend to be more vulnerable to infection, which can reduce performance, assimilates, and ultimately yield. Our objectives were to determine the impact of rust (caused by Puccinia silphii) on yield and leaf function in selected Silphium integrifolium (Asteraceae) plants. We tested the effect of a fungicide treatment on rust severity and yield, compared the rust infection of individuals in a population selected for yield, and related this to chemical changes at the leaf level. We also estimated heritability for rust resistance. We found that productivity indicators (head number and weight, leaf weight) and leaf processes (photosynthetic capacity, water use efficiency) were reduced when silphium leaves and stems were more heavily infected by P. silphii. Leaf resin content increased when susceptible plants were infected. Fungicide treatments were effective at reducing rust infection severity, but were ineffective at preventing yield losses. We propose that disease resistance should be included early in the selection process of new perennial crops.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ArgentinaPublisher:MDPI AG Alejandra Vilela; Luciana González-Paleo; Kathryn Turner; Kelsey Peterson; Damián Ravetta; Timothy Crews; David Van Tassel;doi: 10.3390/su10030638
handle: 11336/97467
Silflower (Silphium integrifolium Michx.) is in the early stages of domestication as a perennial version of oilseed sunflower, its close relative. Grain crops with deep perennial root systems will provide farmers with new alternatives for managing soil moisture and limiting or remediating soil erosion, fertilizer leaching, and loss of soil biota. Several cycles of selection for increased seed production potential following initial germplasm evaluation in 2002 have provided opportunities to document the botany and ecology of this relatively obscure species, to compare agronomic practices for improving its propagation and management, and to evaluate the differences between semi-domesticated and wild accessions that have accrued over this time through intentional and unintentional genetic processes. Key findings include: domestication has increased aboveground biomass at seedling and adult stages; seed yield has increased more, achieving modest improvement in harvest index. Harvest index decreases with nitrogen fertilization. Silflower acquires nitrogen and water from greater depth than typical crops. In agricultural silflower stands within its native range, we found that Puccinia silphii (rust) and Eucosma giganteana (moth) populations build up to unacceptable levels, but we also found genetic variation for traits contributing to resistance or tolerance. Breeding or management for reduced height and vegetative plasticity should be top priorities for future silflower research outside its native range.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ArgentinaPublisher:MDPI AG Alejandra Vilela; Luciana González-Paleo; Kathryn Turner; Kelsey Peterson; Damián Ravetta; Timothy Crews; David Van Tassel;doi: 10.3390/su10030638
handle: 11336/97467
Silflower (Silphium integrifolium Michx.) is in the early stages of domestication as a perennial version of oilseed sunflower, its close relative. Grain crops with deep perennial root systems will provide farmers with new alternatives for managing soil moisture and limiting or remediating soil erosion, fertilizer leaching, and loss of soil biota. Several cycles of selection for increased seed production potential following initial germplasm evaluation in 2002 have provided opportunities to document the botany and ecology of this relatively obscure species, to compare agronomic practices for improving its propagation and management, and to evaluate the differences between semi-domesticated and wild accessions that have accrued over this time through intentional and unintentional genetic processes. Key findings include: domestication has increased aboveground biomass at seedling and adult stages; seed yield has increased more, achieving modest improvement in harvest index. Harvest index decreases with nitrogen fertilization. Silflower acquires nitrogen and water from greater depth than typical crops. In agricultural silflower stands within its native range, we found that Puccinia silphii (rust) and Eucosma giganteana (moth) populations build up to unacceptable levels, but we also found genetic variation for traits contributing to resistance or tolerance. Breeding or management for reduced height and vegetative plasticity should be top priorities for future silflower research outside its native range.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Proceedings of the National Academy of Sciences Authors: Aubrey Streit Krug; Emily B. M. Drummond; David L. Van Tassel; Emily J. Warschefsky;Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene—the process of domestication can help build them.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2205769120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2205769120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Proceedings of the National Academy of Sciences Authors: Aubrey Streit Krug; Emily B. M. Drummond; David L. Van Tassel; Emily J. Warschefsky;Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene—the process of domestication can help build them.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2205769120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2205769120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ArgentinaPublisher:MDPI AG Authors: M. Turner; Damian Ravetta; David Van Tassel;doi: 10.3390/su10030696
handle: 11336/96766
New crops with greater capacity for delivering ecosystem services are needed to increase agricultural sustainability. However, even in these crops, seed yield is usually the main criteria for grain domestication. This focus on yield can cause unintended structural and functional changes. Leaves of selected plants tend to be more vulnerable to infection, which can reduce performance, assimilates, and ultimately yield. Our objectives were to determine the impact of rust (caused by Puccinia silphii) on yield and leaf function in selected Silphium integrifolium (Asteraceae) plants. We tested the effect of a fungicide treatment on rust severity and yield, compared the rust infection of individuals in a population selected for yield, and related this to chemical changes at the leaf level. We also estimated heritability for rust resistance. We found that productivity indicators (head number and weight, leaf weight) and leaf processes (photosynthetic capacity, water use efficiency) were reduced when silphium leaves and stems were more heavily infected by P. silphii. Leaf resin content increased when susceptible plants were infected. Fungicide treatments were effective at reducing rust infection severity, but were ineffective at preventing yield losses. We propose that disease resistance should be included early in the selection process of new perennial crops.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ArgentinaPublisher:MDPI AG Authors: M. Turner; Damian Ravetta; David Van Tassel;doi: 10.3390/su10030696
handle: 11336/96766
New crops with greater capacity for delivering ecosystem services are needed to increase agricultural sustainability. However, even in these crops, seed yield is usually the main criteria for grain domestication. This focus on yield can cause unintended structural and functional changes. Leaves of selected plants tend to be more vulnerable to infection, which can reduce performance, assimilates, and ultimately yield. Our objectives were to determine the impact of rust (caused by Puccinia silphii) on yield and leaf function in selected Silphium integrifolium (Asteraceae) plants. We tested the effect of a fungicide treatment on rust severity and yield, compared the rust infection of individuals in a population selected for yield, and related this to chemical changes at the leaf level. We also estimated heritability for rust resistance. We found that productivity indicators (head number and weight, leaf weight) and leaf processes (photosynthetic capacity, water use efficiency) were reduced when silphium leaves and stems were more heavily infected by P. silphii. Leaf resin content increased when susceptible plants were infected. Fungicide treatments were effective at reducing rust infection severity, but were ineffective at preventing yield losses. We propose that disease resistance should be included early in the selection process of new perennial crops.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/696/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ArgentinaPublisher:MDPI AG Alejandra Vilela; Luciana González-Paleo; Kathryn Turner; Kelsey Peterson; Damián Ravetta; Timothy Crews; David Van Tassel;doi: 10.3390/su10030638
handle: 11336/97467
Silflower (Silphium integrifolium Michx.) is in the early stages of domestication as a perennial version of oilseed sunflower, its close relative. Grain crops with deep perennial root systems will provide farmers with new alternatives for managing soil moisture and limiting or remediating soil erosion, fertilizer leaching, and loss of soil biota. Several cycles of selection for increased seed production potential following initial germplasm evaluation in 2002 have provided opportunities to document the botany and ecology of this relatively obscure species, to compare agronomic practices for improving its propagation and management, and to evaluate the differences between semi-domesticated and wild accessions that have accrued over this time through intentional and unintentional genetic processes. Key findings include: domestication has increased aboveground biomass at seedling and adult stages; seed yield has increased more, achieving modest improvement in harvest index. Harvest index decreases with nitrogen fertilization. Silflower acquires nitrogen and water from greater depth than typical crops. In agricultural silflower stands within its native range, we found that Puccinia silphii (rust) and Eucosma giganteana (moth) populations build up to unacceptable levels, but we also found genetic variation for traits contributing to resistance or tolerance. Breeding or management for reduced height and vegetative plasticity should be top priorities for future silflower research outside its native range.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ArgentinaPublisher:MDPI AG Alejandra Vilela; Luciana González-Paleo; Kathryn Turner; Kelsey Peterson; Damián Ravetta; Timothy Crews; David Van Tassel;doi: 10.3390/su10030638
handle: 11336/97467
Silflower (Silphium integrifolium Michx.) is in the early stages of domestication as a perennial version of oilseed sunflower, its close relative. Grain crops with deep perennial root systems will provide farmers with new alternatives for managing soil moisture and limiting or remediating soil erosion, fertilizer leaching, and loss of soil biota. Several cycles of selection for increased seed production potential following initial germplasm evaluation in 2002 have provided opportunities to document the botany and ecology of this relatively obscure species, to compare agronomic practices for improving its propagation and management, and to evaluate the differences between semi-domesticated and wild accessions that have accrued over this time through intentional and unintentional genetic processes. Key findings include: domestication has increased aboveground biomass at seedling and adult stages; seed yield has increased more, achieving modest improvement in harvest index. Harvest index decreases with nitrogen fertilization. Silflower acquires nitrogen and water from greater depth than typical crops. In agricultural silflower stands within its native range, we found that Puccinia silphii (rust) and Eucosma giganteana (moth) populations build up to unacceptable levels, but we also found genetic variation for traits contributing to resistance or tolerance. Breeding or management for reduced height and vegetative plasticity should be top priorities for future silflower research outside its native range.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/3/638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu