- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Riccardo Rocca; Naiara Leticia Marana; Fabrizio Silveri; Maddalena D’Amore; Eleonora Ascrizzi; Mauro Francesco Sgroi; Nello Li Pira; Anna Maria Ferrari;handle: 2318/2029671
Lithium-titanium-sulfur cathodes have garnered interest due to their distinctive properties and potential applications in lithium-ion batteries. They present various benefits, including lower cost, enhanced safety, and greater energy density compared to the commonly used transition metal oxides. The current trend in lithium-ion batteries is to move to all-solid-state chemistries in order to improve safety and energy density. Several chemistries for solid electrolytes have been studied, tested, and characterized to evaluate the applicability in energy storage system. Among those, sulfur-based Argyrodites have been coupled with cubic rock-salt type Li2TiS3 electrodes. In this work, Li2TiS3 surfaces were investigated with DFT methods in different conditions, covering the possible configurations that can occur during the cathode usage: pristine, delithiated, and overlithiated. Interfaces were built by coupling selected Li2TiS3 surfaces with the most stable Argyrodite surface, as derived from a previous study, allowing us to understand the (electro)chemical compatibility between these two sulfur-based materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10100351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10100351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Utilisation of Solar Ener..., UKRI | The UK Catalysis Hub - 'S..., UKRI | Biocatalysis & Biotra... +2 projectsUKRI| Utilisation of Solar Energy and Electrocatalytic Processes for the Low Energy Conversion of CO2 to Fuels and Chemicals ,UKRI| The UK Catalysis Hub - 'Science': 1 - Optimising, predicting and designing new Catalysts ,UKRI| Biocatalysis & Biotransformation: A 5th Theme for the National Catalysis Hub ,UKRI| EPCC Tier 2 HPC Service ,UKRI| The UK Catalysis HubFabrizio Silveri; Matthew G. Quesne; Francesc Viñes; Francesc Illas; C. Richard A. Catlow; Nora H. de Leeuw;We present a computational study of the activity and selectivity of early transition-metal carbides as carbon dioxide reduction catalysts. We analyze the effects of the adsorption of CO2 and H2 on the (001), (011), and metal-terminated (111) surfaces of TiC and ZrC, as carbon dioxide undergoes either dissociation to CO or hydrogenation to COOH or HCOO. The relative stabilities of the three reduction intermediates and the activation energies for their formation allow the identification of favored pathways on each surface, which are examined as they lead to the release of CO, HCOOH, CH3OH, and CH4, thereby also characterizing the activity and selectivity of the two materials. Reaction energetics implicate HCO as the key common intermediate on all surfaces studied and rule out the release of formaldehyde. Surface hydroxylation is shown to be highly selective toward methane production as the formation of methanol is hindered on all surfaces by its barrierless conversion to CO.
CORE arrow_drop_down The Journal of Physical Chemistry CArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.1c10180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down The Journal of Physical Chemistry CArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.1c10180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Utilisation of Solar Ener...UKRI| Utilisation of Solar Energy and Electrocatalytic Processes for the Low Energy Conversion of CO2 to Fuels and ChemicalsFabrizio Silveri; Matthew G. Quesne; Alberto Roldan; Nora H. de Leeuw; C. Richard A. Catlow;doi: 10.1039/c8cp05975f
pmid: 30652181
This work investigates the hydrogenation of the surfaces of those materials and its relationship with the catalytic behaviour of these materials.
CORE arrow_drop_down Online Research @ CardiffArticle . 2019License: CC BYFull-Text: http://orca.cf.ac.uk/118518/1/c8cp05975f.pdfData sources: CORE (RIOXX-UK Aggregator)Physical Chemistry Chemical PhysicsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8cp05975f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Online Research @ CardiffArticle . 2019License: CC BYFull-Text: http://orca.cf.ac.uk/118518/1/c8cp05975f.pdfData sources: CORE (RIOXX-UK Aggregator)Physical Chemistry Chemical PhysicsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8cp05975f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:MDPI AG Riccardo Rocca; Naiara Leticia Marana; Fabrizio Silveri; Maddalena D’Amore; Eleonora Ascrizzi; Mauro Francesco Sgroi; Nello Li Pira; Anna Maria Ferrari;handle: 2318/2029671
Lithium-titanium-sulfur cathodes have garnered interest due to their distinctive properties and potential applications in lithium-ion batteries. They present various benefits, including lower cost, enhanced safety, and greater energy density compared to the commonly used transition metal oxides. The current trend in lithium-ion batteries is to move to all-solid-state chemistries in order to improve safety and energy density. Several chemistries for solid electrolytes have been studied, tested, and characterized to evaluate the applicability in energy storage system. Among those, sulfur-based Argyrodites have been coupled with cubic rock-salt type Li2TiS3 electrodes. In this work, Li2TiS3 surfaces were investigated with DFT methods in different conditions, covering the possible configurations that can occur during the cathode usage: pristine, delithiated, and overlithiated. Interfaces were built by coupling selected Li2TiS3 surfaces with the most stable Argyrodite surface, as derived from a previous study, allowing us to understand the (electro)chemical compatibility between these two sulfur-based materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10100351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries10100351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Utilisation of Solar Ener..., UKRI | The UK Catalysis Hub - 'S..., UKRI | Biocatalysis & Biotra... +2 projectsUKRI| Utilisation of Solar Energy and Electrocatalytic Processes for the Low Energy Conversion of CO2 to Fuels and Chemicals ,UKRI| The UK Catalysis Hub - 'Science': 1 - Optimising, predicting and designing new Catalysts ,UKRI| Biocatalysis & Biotransformation: A 5th Theme for the National Catalysis Hub ,UKRI| EPCC Tier 2 HPC Service ,UKRI| The UK Catalysis HubFabrizio Silveri; Matthew G. Quesne; Francesc Viñes; Francesc Illas; C. Richard A. Catlow; Nora H. de Leeuw;We present a computational study of the activity and selectivity of early transition-metal carbides as carbon dioxide reduction catalysts. We analyze the effects of the adsorption of CO2 and H2 on the (001), (011), and metal-terminated (111) surfaces of TiC and ZrC, as carbon dioxide undergoes either dissociation to CO or hydrogenation to COOH or HCOO. The relative stabilities of the three reduction intermediates and the activation energies for their formation allow the identification of favored pathways on each surface, which are examined as they lead to the release of CO, HCOOH, CH3OH, and CH4, thereby also characterizing the activity and selectivity of the two materials. Reaction energetics implicate HCO as the key common intermediate on all surfaces studied and rule out the release of formaldehyde. Surface hydroxylation is shown to be highly selective toward methane production as the formation of methanol is hindered on all surfaces by its barrierless conversion to CO.
CORE arrow_drop_down The Journal of Physical Chemistry CArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.1c10180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down The Journal of Physical Chemistry CArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jpcc.1c10180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | Utilisation of Solar Ener...UKRI| Utilisation of Solar Energy and Electrocatalytic Processes for the Low Energy Conversion of CO2 to Fuels and ChemicalsFabrizio Silveri; Matthew G. Quesne; Alberto Roldan; Nora H. de Leeuw; C. Richard A. Catlow;doi: 10.1039/c8cp05975f
pmid: 30652181
This work investigates the hydrogenation of the surfaces of those materials and its relationship with the catalytic behaviour of these materials.
CORE arrow_drop_down Online Research @ CardiffArticle . 2019License: CC BYFull-Text: http://orca.cf.ac.uk/118518/1/c8cp05975f.pdfData sources: CORE (RIOXX-UK Aggregator)Physical Chemistry Chemical PhysicsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8cp05975f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Online Research @ CardiffArticle . 2019License: CC BYFull-Text: http://orca.cf.ac.uk/118518/1/c8cp05975f.pdfData sources: CORE (RIOXX-UK Aggregator)Physical Chemistry Chemical PhysicsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8cp05975f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu