- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 NorwayPublisher:Wiley Amir Rasekhi Nejad; Yihan Xing; Yi Guo; Jonathan Keller; Zhen Gao; Torgeir Moan;doi: 10.1002/we.1808
handle: 11250/2473823
This paper addresses the effect of gear geometrical errors in wind turbine planetary gearboxes with a floating sun gear. Numerical simulations and experiments are employed throughout the study. A National Renewable Energy Laboratory 750 kW gearbox is modelled in a multibody environment and verified using the experimental data obtained from a dynamometer test. The gear geometrical errors, which are both assembly dependent and assembly independent, are described, and planet-pin misalignment and eccentricity are selected as the two most influential and key errors for case studies. Various load cases involving errors in the floating and non-floating sun gear designs are simulated, and the planet-bearing reactions, gear vibrations, gear mesh loads and bearing fatigue lives are compared. All tests and simulations are performed at the rated wind speed. For errorless gears, the non-floating sun gear design performs better in terms of gear load variation, whereas the upwind planet bearing has more damage. In the floating sun gear scenario, the planet misalignment is neutralized by changing the sun motion pattern and the planet gear's elastic deformation. The effects of gear profile modifications are also evaluated, revealing that profile modifications such as crowning improve the effects of misalignment. Copyright © 2014 John Wiley & Sons, Ltd.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 United KingdomPublisher:Wiley Funded by:EC | MARINA PLATFORMEC| MARINA PLATFORMAuthors: Xing, Y.; Karimirad, Madjid; Moan, Torgeir;doi: 10.1002/we.1590
ABSTRACTThis paper studies the drivetrain dynamics of a 750 kW spar‐type floating wind turbine (FWT). The drivetrain studied is a high‐speed generator, one‐stage planetary, two‐stage parallel and three‐point support type. The response analysis is carried out in two steps. First, global aero‐hydro‐elastic‐servo time‐domain analyses are performed using HAWC2. The main shaft loads, which include the axial forces, shear forces and bending moments, are obtained in this integrated wind–wave response analysis. These loads are then used as inputs for the multi‐body drivetrain time‐domain analyses in SIMPACK. The investigations are largely based on comparisons of the main shaft loads and internal drivetrain responses from 1 h simulations. The tooth contact forces, bearing loads and gear deflections are the internal drivetrain response variables studied. The comparisons are based on the mean values, standard deviations and maximum values extrapolated using a 10 − 5 up‐crossing rate. Both operational and parked conditions are considered. The investigation consists of three parts. First, the responses are compared between the FWT and its equivalent land‐based version. Second, the contributions from the main shaft loads (shear forces, axial forces and bending moments) and nacelle motions are investigated individually. Third, an improved four‐point support (4PT) system is studied and compared against the original three‐point support system for the FWT. The results show that there are general increases in the standard deviations of the main shaft loads and internal drivetrain responses in the FWT. In addition, these increases are a result of the increased main shaft loads in the FWT, especially the non‐torque loads. Last, the 4PT system, when applied to a FWT drivetrain, significantly reduces the tooth contact forces and bearing loads in the low‐speed stage, but this result comes at the expense of increased main bearing radial loads. Copyright © 2013 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen's University Belfast Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/we.1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen's University Belfast Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/we.1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NorwayPublisher:Elsevier BV Yihan Xing; Shuaishuai Wang; Anuraj Karuvathil; Rajiv Balakrishna; Oleg Gaidai;The global average size of offshore wind turbines has increased steadily from 1.5 MW to 6 MW from 2000 to 2020. With this backdrop, the research community has recently looked at huge 10-15 MW class floating offshore wind turbines (FOWTs). The larger rotor, nacelle structure and tower have more significant structural flexibility. The larger structural flexibility, controller dynamics, aerodynamics, hydrodynamics, and various environmental conditions result in complex structural responses. The structural load effects of a very large FOWT could be more severe than that of the lower MW classes. Accurate quantification of the extreme dynamic responses of FOWT systems is essential in the design of the Ultimate Limit State (ULS) due to the fully-coupled interaction between the FOWT system and environmental conditions. Motivated by this, extreme responses of the 10 MW semi-submersible type FOWT are investigated using the average conditional exceedance rate (ACER) and Gumbel methods. Three operating conditions representing below-rated (U = 8 m/s), rated (U = 12 m/s) and above-rated (U = 16 m/s) regions were considered. The aim is to guide future research on large FOWTs by indicating the expected ULS loads.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e13728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e13728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Rajiv Balakrishna; Oleg Gaidai; Fang Wang; Yihan Xing; Shuaishuai Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2022.112007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2022.112007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Torgeir Moan; Yi Guo; Zhiyu Jiang; Zhen Gao; Yihan Xing;doi: 10.1002/we.1713
AbstractThis paper presents an approach for performing a long‐term fatigue analysis of rolling element bearings in wind turbine gearboxes. Multilevel integrated analyses were performed using the aeroservoelastic code HAWC2, the multibody dynamics code SIMPACK, the three‐dimensional finite element code Calyx and a simplified lifetime prediction model for rolling contact fatigue. The National Renewable Energy Laboratory's 750 kW wind turbine and its planetary bearing were studied. Design load cases, including normal production, parked and transient load cases, were considered. To obtain the internal bearing load distribution, an advanced approach combining a finite element/contact mechanics model and a response surface model were used. In addition, a traditional approach, the Harris model, was also applied for comparison. The long‐term probability distribution of the bearing raceway contact pressure range was then obtained using Weibull and generalized Gamma distribution functions. Finally, we estimated the fatigue life of the bearing, discussed the differences of the methods used to obtain the bearing internal loads and analyzed the effects of the environmental conditions and load cases on the results. The Harris model may underestimate the inner raceway life by 55.7%, which can cause large load fluctuations along the raceways. The bearing fatigue life is very sensitive to the wind distribution and less affected by the transient and parked load cases. Copyright © 2014 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Oleg Gaidai; Fang Wang; Yihan Xing; Rajiv Balakrishna;Wind turbines and associated parts are susceptible to cyclic stresses, including torque, bending, and longitudinal stress, and twisting moments. Therefore, research on the resilience of dynamic systems under such high loads is crucial for design and future risk‐free operations. The method described in this study is beneficial for multidimensional structural responses that have undergone sufficient numerical simulation or measurement. In contrast to established dependability methodologies, the unique technique does not need to restart the numerical simulation each time the system fails. Herein, it is demonstrated that it is also possible to accurately predict the probability of a system failure in the event of a measurable structural reaction. In contrast to well‐established bivariate statistical methods, which are known to predict extreme response levels for 2D systems accurately, this study validates a novel structural reliability method that is particularly suitable for multidimensional structural responses. In contrast to conventional methods, the novel reliability approach does not invoke a multidimensional reliability function in the Monte Carlo numerical simulation case. As demonstrated in this study, it is also possible to accurately anticipate the likelihood of a system failure in the case of a measurable structural reaction.
Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202200177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202200177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Omar El Beshbichi; Yihan Xing; Muk Chen Ong;doi: 10.1002/we.2850
AbstractMulti‐rotor floating wind turbines are among the innovative technologies proposed in the last decade in the effort to reduce the cost of wind energy. These systems are able to offer advantages in terms of smaller blades deployed offshore, cheaper operations, fewer installations, and sharing of the floating platform. As the blade‐pitch actuation system is prone to failures, the assessment of the associated load scenarios is commonly required. Load assessment of blade‐pitch fault scenarios has only been performed for single‐rotor solutions. In this work, we address the effect of blade‐pitch system faults and emergency shutdown on the dynamics and loads of a two‐rotor floating wind turbine. The concept considered employs two NREL 5‐MW baseline wind turbines and the OO‐Star semi‐submersible platform. The blade‐pitch faults investigated are blade blockage and runaway, that is, the seizure at a given pitch angle and the uncontrolled actuation of one of the blades, respectively. Blade‐pitch faults lead to a significant increase in the structural loads of the system, especially for runaway fault conditions. Emergency shutdown significantly excites the platform pitch motion, the tower‐bottom bending moment, and tower torsional loads, while suppressing the faulty blade flapwise bending moment after a short peak. Shutdown delay between rotors increases significantly the maxima of the torsional loads acting on the tower. Comparison of blade loads with data from single‐rotor spar‐type study show great similarity, highlighting that the faulty blade loads are not affected by (1) the type of platform used and (2) the multi‐rotor deployment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Jian Tan; Wei Tao; Antonio Jarquin Laguna; Henk Polinder; Yihan Xing; Sape Miedema;Wave-to-Wire models play an important role in the development of wave energy converters. They could provide insight into the complete operating process of wave energy converters, from the power absorption stage to the power conversion stage. In order to cover a set of relevant nonlinear effects, wave-to-wire models are predominately established in the time domain. However, the low computational efficiency of time-domain modeling is hindering the extensive application of wave-to-wire models, especially in early-stage design and optimization where a large number of iterations are required. To address this issue, a spectral-domain wave-to-wire model is proposed, and the nonlinear effects are incorporated by stochastic linearization. This model can significantly reduce the computational load and maintain good accuracy. The reference concept studied in this paper is defined as a heaving point absorber coupled with a linear permanent-magnet generator. Four representative nonlinear effects involved in both the hydrodynamic stage and the electrical stage of the concept are considered. The proposed model is verified against a corresponding nonlinear time-domain wave-to-wire model, and a good agreement is observed. The relative error of the proposed spectral-domain wave-to-wire model is around 2 % in typical operational regions and is still within 7 % for wave states with large significant wave heights, regarding the estimate of the power conversion efficiency. Meanwhile, the computational load of the spectral-domain wave-to-wire model is reduced by 2 to 3 orders of magnitudes compared with the conventional time-domain approach. Finally, a case study of tuning the PTO damping to maximize power production is conducted to demonstrate the performance of the proposed spectral-domain wave-to-wire model. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. Transport Engineering and Logistics Offshore and Dredging Engineering
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apor.2023.103650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 45visibility views 45 download downloads 8 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apor.2023.103650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NorwayPublisher:Institution of Engineering and Technology (IET) Authors: Shuaishuai Wang; Yihan Xing; Anuraj Karuvathil; Oleg Gaidai;doi: 10.1049/rpg2.12721
handle: 11250/3071781
AbstractThe utilisation of offshore wind turbines has rapidly increased in the last decade, which has resulted in a steady increase in wind turbine sizes. The global average offshore wind turbine size has increased from 1.5 MW to 6 MW in the last two decades. The research community has started to investigate huge 10 to 15 MW offshore wind turbines in recent years, resulting in the study of very innovative floating wind turbines using various substructure technologies. With this backdrop, this paper will investigate and thoroughly compare the power performance of extreme load effects of a large offshore 10 MW turbine installed on the monopile, spar, and semisubmersible substructures. This is performed by using the average conditional exceedance rate (ACER) and Gumbel methods to predict the extreme responses under the operating conditions of 8, 12, and 16 m/s mean wind speed, representing the below‐rated, rated, and above‐rated regions, respectively. The results show that the power performance and extreme loads experienced depends significantly on the operating regions. The mean power generation between the three different types of offshore wind turbines (OWTs) are closely in the whole operating range, which standard deviations differ significantly. Large standard deviations of power generation appear in the spar turbine under the below‐rated condition. Further, it was observed that the spar wind turbine generally experiences larger extreme loads due to larger platform pitch motion. In addition, the ACER method shows a better prediction for the 1, 2 and 5‐year extreme responses than the Gumbel method, which is due to the relatively poor data fitting of the Gumbel method at the upper tail. The study is believed to consolidate and close the knowledge gap in understanding wind turbine responses across the most common offshore substructure technologies and provide a basis for design and deployment of OWTs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 NorwayPublisher:IOP Publishing Authors: Jouybari, Mehdi Behboodi; Xing, Yihan;handle: 11250/3054855
Abstract Designing a wave energy converter with the proper size has always been challenging since it is a trade-off between many factors including cost, practicality, and energy output. In this paper a practical design procedure for sizing of heaving point absorbers wave energy converters is presented. Size can be represented by the body volume. Budal power bounds are deployed to obtain the body volume and annual mean absorbed power of the wave energy converter. Budal power bounds are determined for each sea state. Aiming a specific power capture ratio, several sets of design sea states with related design volume and annual mean absorbed power are defined. With the design objective of maximizing the ratio of mean power to submerged volume, and considering suitable design constraints, the best size is obtained. The proposed procedure will be then deployed for a case study and the design will be compared with an existing similar point absorber. The results show that the mean absorbed power does not depend on the size but is a function of selected sea states. Furthermore, the comparison study reveals that the proposed design procedure yields reasonable power characteristics.
IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1201/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1201/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 NorwayPublisher:Wiley Amir Rasekhi Nejad; Yihan Xing; Yi Guo; Jonathan Keller; Zhen Gao; Torgeir Moan;doi: 10.1002/we.1808
handle: 11250/2473823
This paper addresses the effect of gear geometrical errors in wind turbine planetary gearboxes with a floating sun gear. Numerical simulations and experiments are employed throughout the study. A National Renewable Energy Laboratory 750 kW gearbox is modelled in a multibody environment and verified using the experimental data obtained from a dynamometer test. The gear geometrical errors, which are both assembly dependent and assembly independent, are described, and planet-pin misalignment and eccentricity are selected as the two most influential and key errors for case studies. Various load cases involving errors in the floating and non-floating sun gear designs are simulated, and the planet-bearing reactions, gear vibrations, gear mesh loads and bearing fatigue lives are compared. All tests and simulations are performed at the rated wind speed. For errorless gears, the non-floating sun gear design performs better in terms of gear load variation, whereas the upwind planet bearing has more damage. In the floating sun gear scenario, the planet misalignment is neutralized by changing the sun motion pattern and the planet gear's elastic deformation. The effects of gear profile modifications are also evaluated, revealing that profile modifications such as crowning improve the effects of misalignment. Copyright © 2014 John Wiley & Sons, Ltd.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 United KingdomPublisher:Wiley Funded by:EC | MARINA PLATFORMEC| MARINA PLATFORMAuthors: Xing, Y.; Karimirad, Madjid; Moan, Torgeir;doi: 10.1002/we.1590
ABSTRACTThis paper studies the drivetrain dynamics of a 750 kW spar‐type floating wind turbine (FWT). The drivetrain studied is a high‐speed generator, one‐stage planetary, two‐stage parallel and three‐point support type. The response analysis is carried out in two steps. First, global aero‐hydro‐elastic‐servo time‐domain analyses are performed using HAWC2. The main shaft loads, which include the axial forces, shear forces and bending moments, are obtained in this integrated wind–wave response analysis. These loads are then used as inputs for the multi‐body drivetrain time‐domain analyses in SIMPACK. The investigations are largely based on comparisons of the main shaft loads and internal drivetrain responses from 1 h simulations. The tooth contact forces, bearing loads and gear deflections are the internal drivetrain response variables studied. The comparisons are based on the mean values, standard deviations and maximum values extrapolated using a 10 − 5 up‐crossing rate. Both operational and parked conditions are considered. The investigation consists of three parts. First, the responses are compared between the FWT and its equivalent land‐based version. Second, the contributions from the main shaft loads (shear forces, axial forces and bending moments) and nacelle motions are investigated individually. Third, an improved four‐point support (4PT) system is studied and compared against the original three‐point support system for the FWT. The results show that there are general increases in the standard deviations of the main shaft loads and internal drivetrain responses in the FWT. In addition, these increases are a result of the increased main shaft loads in the FWT, especially the non‐torque loads. Last, the 4PT system, when applied to a FWT drivetrain, significantly reduces the tooth contact forces and bearing loads in the low‐speed stage, but this result comes at the expense of increased main bearing radial loads. Copyright © 2013 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen's University Belfast Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/we.1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueen's University Belfast Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/we.1...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 NorwayPublisher:Elsevier BV Yihan Xing; Shuaishuai Wang; Anuraj Karuvathil; Rajiv Balakrishna; Oleg Gaidai;The global average size of offshore wind turbines has increased steadily from 1.5 MW to 6 MW from 2000 to 2020. With this backdrop, the research community has recently looked at huge 10-15 MW class floating offshore wind turbines (FOWTs). The larger rotor, nacelle structure and tower have more significant structural flexibility. The larger structural flexibility, controller dynamics, aerodynamics, hydrodynamics, and various environmental conditions result in complex structural responses. The structural load effects of a very large FOWT could be more severe than that of the lower MW classes. Accurate quantification of the extreme dynamic responses of FOWT systems is essential in the design of the Ultimate Limit State (ULS) due to the fully-coupled interaction between the FOWT system and environmental conditions. Motivated by this, extreme responses of the 10 MW semi-submersible type FOWT are investigated using the average conditional exceedance rate (ACER) and Gumbel methods. Three operating conditions representing below-rated (U = 8 m/s), rated (U = 12 m/s) and above-rated (U = 16 m/s) regions were considered. The aim is to guide future research on large FOWTs by indicating the expected ULS loads.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e13728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e13728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Rajiv Balakrishna; Oleg Gaidai; Fang Wang; Yihan Xing; Shuaishuai Wang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2022.112007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.oceaneng.2022.112007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Torgeir Moan; Yi Guo; Zhiyu Jiang; Zhen Gao; Yihan Xing;doi: 10.1002/we.1713
AbstractThis paper presents an approach for performing a long‐term fatigue analysis of rolling element bearings in wind turbine gearboxes. Multilevel integrated analyses were performed using the aeroservoelastic code HAWC2, the multibody dynamics code SIMPACK, the three‐dimensional finite element code Calyx and a simplified lifetime prediction model for rolling contact fatigue. The National Renewable Energy Laboratory's 750 kW wind turbine and its planetary bearing were studied. Design load cases, including normal production, parked and transient load cases, were considered. To obtain the internal bearing load distribution, an advanced approach combining a finite element/contact mechanics model and a response surface model were used. In addition, a traditional approach, the Harris model, was also applied for comparison. The long‐term probability distribution of the bearing raceway contact pressure range was then obtained using Weibull and generalized Gamma distribution functions. Finally, we estimated the fatigue life of the bearing, discussed the differences of the methods used to obtain the bearing internal loads and analyzed the effects of the environmental conditions and load cases on the results. The Harris model may underestimate the inner raceway life by 55.7%, which can cause large load fluctuations along the raceways. The bearing fatigue life is very sensitive to the wind distribution and less affected by the transient and parked load cases. Copyright © 2014 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Oleg Gaidai; Fang Wang; Yihan Xing; Rajiv Balakrishna;Wind turbines and associated parts are susceptible to cyclic stresses, including torque, bending, and longitudinal stress, and twisting moments. Therefore, research on the resilience of dynamic systems under such high loads is crucial for design and future risk‐free operations. The method described in this study is beneficial for multidimensional structural responses that have undergone sufficient numerical simulation or measurement. In contrast to established dependability methodologies, the unique technique does not need to restart the numerical simulation each time the system fails. Herein, it is demonstrated that it is also possible to accurately predict the probability of a system failure in the event of a measurable structural reaction. In contrast to well‐established bivariate statistical methods, which are known to predict extreme response levels for 2D systems accurately, this study validates a novel structural reliability method that is particularly suitable for multidimensional structural responses. In contrast to conventional methods, the novel reliability approach does not invoke a multidimensional reliability function in the Monte Carlo numerical simulation case. As demonstrated in this study, it is also possible to accurately anticipate the likelihood of a system failure in the case of a measurable structural reaction.
Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202200177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202200177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Omar El Beshbichi; Yihan Xing; Muk Chen Ong;doi: 10.1002/we.2850
AbstractMulti‐rotor floating wind turbines are among the innovative technologies proposed in the last decade in the effort to reduce the cost of wind energy. These systems are able to offer advantages in terms of smaller blades deployed offshore, cheaper operations, fewer installations, and sharing of the floating platform. As the blade‐pitch actuation system is prone to failures, the assessment of the associated load scenarios is commonly required. Load assessment of blade‐pitch fault scenarios has only been performed for single‐rotor solutions. In this work, we address the effect of blade‐pitch system faults and emergency shutdown on the dynamics and loads of a two‐rotor floating wind turbine. The concept considered employs two NREL 5‐MW baseline wind turbines and the OO‐Star semi‐submersible platform. The blade‐pitch faults investigated are blade blockage and runaway, that is, the seizure at a given pitch angle and the uncontrolled actuation of one of the blades, respectively. Blade‐pitch faults lead to a significant increase in the structural loads of the system, especially for runaway fault conditions. Emergency shutdown significantly excites the platform pitch motion, the tower‐bottom bending moment, and tower torsional loads, while suppressing the faulty blade flapwise bending moment after a short peak. Shutdown delay between rotors increases significantly the maxima of the torsional loads acting on the tower. Comparison of blade loads with data from single‐rotor spar‐type study show great similarity, highlighting that the faulty blade loads are not affected by (1) the type of platform used and (2) the multi‐rotor deployment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.2850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Jian Tan; Wei Tao; Antonio Jarquin Laguna; Henk Polinder; Yihan Xing; Sape Miedema;Wave-to-Wire models play an important role in the development of wave energy converters. They could provide insight into the complete operating process of wave energy converters, from the power absorption stage to the power conversion stage. In order to cover a set of relevant nonlinear effects, wave-to-wire models are predominately established in the time domain. However, the low computational efficiency of time-domain modeling is hindering the extensive application of wave-to-wire models, especially in early-stage design and optimization where a large number of iterations are required. To address this issue, a spectral-domain wave-to-wire model is proposed, and the nonlinear effects are incorporated by stochastic linearization. This model can significantly reduce the computational load and maintain good accuracy. The reference concept studied in this paper is defined as a heaving point absorber coupled with a linear permanent-magnet generator. Four representative nonlinear effects involved in both the hydrodynamic stage and the electrical stage of the concept are considered. The proposed model is verified against a corresponding nonlinear time-domain wave-to-wire model, and a good agreement is observed. The relative error of the proposed spectral-domain wave-to-wire model is around 2 % in typical operational regions and is still within 7 % for wave states with large significant wave heights, regarding the estimate of the power conversion efficiency. Meanwhile, the computational load of the spectral-domain wave-to-wire model is reduced by 2 to 3 orders of magnitudes compared with the conventional time-domain approach. Finally, a case study of tuning the PTO damping to maximize power production is conducted to demonstrate the performance of the proposed spectral-domain wave-to-wire model. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. Transport Engineering and Logistics Offshore and Dredging Engineering
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apor.2023.103650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 45visibility views 45 download downloads 8 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apor.2023.103650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NorwayPublisher:Institution of Engineering and Technology (IET) Authors: Shuaishuai Wang; Yihan Xing; Anuraj Karuvathil; Oleg Gaidai;doi: 10.1049/rpg2.12721
handle: 11250/3071781
AbstractThe utilisation of offshore wind turbines has rapidly increased in the last decade, which has resulted in a steady increase in wind turbine sizes. The global average offshore wind turbine size has increased from 1.5 MW to 6 MW in the last two decades. The research community has started to investigate huge 10 to 15 MW offshore wind turbines in recent years, resulting in the study of very innovative floating wind turbines using various substructure technologies. With this backdrop, this paper will investigate and thoroughly compare the power performance of extreme load effects of a large offshore 10 MW turbine installed on the monopile, spar, and semisubmersible substructures. This is performed by using the average conditional exceedance rate (ACER) and Gumbel methods to predict the extreme responses under the operating conditions of 8, 12, and 16 m/s mean wind speed, representing the below‐rated, rated, and above‐rated regions, respectively. The results show that the power performance and extreme loads experienced depends significantly on the operating regions. The mean power generation between the three different types of offshore wind turbines (OWTs) are closely in the whole operating range, which standard deviations differ significantly. Large standard deviations of power generation appear in the spar turbine under the below‐rated condition. Further, it was observed that the spar wind turbine generally experiences larger extreme loads due to larger platform pitch motion. In addition, the ACER method shows a better prediction for the 1, 2 and 5‐year extreme responses than the Gumbel method, which is due to the relatively poor data fitting of the Gumbel method at the upper tail. The study is believed to consolidate and close the knowledge gap in understanding wind turbine responses across the most common offshore substructure technologies and provide a basis for design and deployment of OWTs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/rpg2.12721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 NorwayPublisher:IOP Publishing Authors: Jouybari, Mehdi Behboodi; Xing, Yihan;handle: 11250/3054855
Abstract Designing a wave energy converter with the proper size has always been challenging since it is a trade-off between many factors including cost, practicality, and energy output. In this paper a practical design procedure for sizing of heaving point absorbers wave energy converters is presented. Size can be represented by the body volume. Budal power bounds are deployed to obtain the body volume and annual mean absorbed power of the wave energy converter. Budal power bounds are determined for each sea state. Aiming a specific power capture ratio, several sets of design sea states with related design volume and annual mean absorbed power are defined. With the design objective of maximizing the ratio of mean power to submerged volume, and considering suitable design constraints, the best size is obtained. The proposed procedure will be then deployed for a case study and the design will be compared with an existing similar point absorber. The results show that the mean absorbed power does not depend on the size but is a function of selected sea states. Furthermore, the comparison study reveals that the proposed design procedure yields reasonable power characteristics.
IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1201/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Materials Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1757-899x/1201/1/012018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu