- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:IOP Publishing Funded by:EC | SPARCCLEEC| SPARCCLEAuthors: Shouro Dasgupta; Johannes Emmerling; Soheil Shayegh;Abstract The impact of climate change on economic growth has been the subject of numerous studies in recent years, with macro-econometric analyses estimating the effect of rising temperatures on gross domestic product (GDP) growth rates at the country-level. However, the distributional impact of warming on inequality and poverty at the micro-level remains relatively unexplored. In this paper, we investigate the relationship between temperature and inequality in South Africa at the national and sub-national level. Our analysis reveals a significant ∪ -shaped relationship between temperature and inequality indices, with inequality lowest at moderate temperatures (11 ∘C–18 ∘C) and increasing sharply as temperatures increase. We find that the optimal temperatures are lower for inequality measures than for income levels. This indicates that substantial increases in inequality are expected at higher temperatures compared to growth impacts. This effect is particularly noticeable for the poorer segments of the population, whose productivity and wages decline as temperatures increase, while the impact on the richer segments is less significant due to their greater adaptive capacity. In terms of mechanisms, we find that agricultural households are more likely to experience an increase in inequality due to warming. Our findings suggest that global warming has two adverse effects on hot countries: reducing average growth and increasing inequality. We compare the outcomes of the moderate RCP6.0 scenario to a reference scenario without warming and find that by the end of the century, the Gini coefficient in South Africa is expected to increase by 3–6 points, resulting in a potential welfare loss of approximately 50% when combined with the impact of warming on GDP (which alone can reach up to 43% by 2100 in South Africa). Our findings highlight the importance of investigating the distributional effects of climate change at the micro-level, particularly in low- or middle-income countries where vulnerable populations are more susceptible to its impacts.
Environmental Resear... arrow_drop_down Environmental Research LettersArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad0448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Environmental Research LettersArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad0448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 India, Netherlands, Netherlands, Japan, Germany, United Kingdom, Netherlands, Netherlands, Austria, IndiaPublisher:Springer Science and Business Media LLC Funded by:FCT | D4, EC | ENGAGE, EC | CD-LINKSFCT| D4 ,EC| ENGAGE ,EC| CD-LINKSKeii Gi; Matthew Gidden; Shinichiro Fujimori; Kimon Keramidas; George Safonov; Gunnar Luderer; Gunnar Luderer; Michel G.J. den Elzen; Wenying Chen; Kostas Fragkiadakis; Jacques Després; Lara Aleluia Reis; Christoph Bertram; Heleen van Soest; Heleen van Soest; Ken Oshiro; Detlef P. van Vuuren; Detlef P. van Vuuren; Pedro Rochedo; Florian Humpenöder; Falko Ueckerdt; Zoi Vrontisi; Kejun Jiang; Ritu Mathur; Stefan Frank; Johannes Emmerling; Niklas Höhne; Keywan Riahi; Maria Kannavou; Elmar Kriegler; Daniel Huppmann; Laurent Drouet; Oliver Fricko; Gokul Iyer; Mark Roelfsema; Mathijs Harmsen; Mathijs Harmsen; Saritha Vishwanathan; Saritha Vishwanathan; Jae Edmonds; Gabriela Iacobuta; Volker Krey; Roberto Schaeffer; Alexandre C. Köberle; Alexandre C. Köberle;AbstractMany countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.
IIASA PURE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/78888Data sources: Bielefeld Academic Search Engine (BASE)IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25190Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-15414-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 319 citations 319 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/78888Data sources: Bielefeld Academic Search Engine (BASE)IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25190Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-15414-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, Netherlands, Netherlands, AustriaPublisher:Elsevier BV M. Strubegger; Ioanna Mouratiadou; Detlef P. van Vuuren; Detlef P. van Vuuren; Marshall Wise; Samuel Carrara; Samuel Carrara; Robert C. Pietzcker; Nico Bauer; Keywan Riahi; Laurent Drouet; Laurent Drouet; Oliver Fricko; Nils Johnson; Elmar Kriegler; Jiyong Eom; Jiyong Eom; David E.H.J. Gernaat; Harmen Sytze de Boer; Shinichiro Fujimori; Toshihiko Masui; Volker Krey; Petr Havlik; David Klein; Katherine Calvin; Page Kyle; Maarten van den Berg; Vassilis Daioglou; Johannes Emmerling; Johannes Emmerling; Jérôme Hilaire; Giacomo Marangoni; Giacomo Marangoni; James E. Edmonds;Abstract Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomic Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability.
IIASA DARE arrow_drop_down Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 279 citations 279 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | ENGAGE, EC | NDC ASPECTS, EC | NAVIGATEEC| ENGAGE ,EC| NDC ASPECTS ,EC| NAVIGATEAuthors: Eduardo Müller-Casseres; Florian Leblanc; Maarten van den Berg; Panagiotis Fragkos; +17 AuthorsEduardo Müller-Casseres; Florian Leblanc; Maarten van den Berg; Panagiotis Fragkos; Olivier Dessens; Hesam Naghash; Rebecca Draeger; Thomas Le Gallic; Isabela S. Tagomori; Ioannis Tsiropoulos; Johannes Emmerling; Luiz Bernardo Baptista; Detlef P. van Vuuren; Anastasis Giannousakis; Laurent Drouet; Joana Portugal-Pereira; Harmen-Sytze de Boer; Nikolaos Tsanakas; Pedro R. R. Rochedo; Alexandre Szklo; Roberto Schaeffer;Abstract In recent years, the decarbonisation of international shipping has become an important policy goal. While Integrated Assessment Models (IAMs) are often used to explore climate mitigation strategies, they typically provide little information on international shipping, which accounts for around 0.75 GtCO2/yr. Here, we perform the first multi-IAM analysis of international shipping, drawing on the results of six global models. Results indicate the need for decreasing emissions in the next decades, with reductions up to 88% in 2050. This is primarily achieved through the deployment of low-carbon fuels. Models that represent several potential low-carbon alternatives tend to show a deeper decarbonisation of international shipping, with drop-in biofuels, renewable alcohols and green ammonia standing out as the main substitutes of conventional maritime fuels.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-01997-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-01997-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Austria, Italy, Netherlands, Germany, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | CD-LINKS, EC | ADVANCEEC| CD-LINKS ,EC| ADVANCEDetlef P. van Vuuren; Detlef P. van Vuuren; Petr Havlik; Massimo Tavoni; Massimo Tavoni; Robert C. Pietzcker; Johannes Emmerling; Gokul Iyer; Shinichiro Fujimori; Shinichiro Fujimori; Zoi Vrontisi; Harmen Sytze de Boer; Harmen Sytze de Boer; Christoph Bertram; Joeri Rogelj; Kimon Keramidas; Gunnar Luderer; Keywan Riahi; Elmar Kriegler; Laurent Drouet; Oliver Fricko; Bert Saveyn; Volker Krey; Alban Kitous; Oreane Y. Edelenbosch; Oreane Y. Edelenbosch; Michaja Pehl;handle: 11311/1062759
The Paris Agreement-which is aimed at holding global warming well below 2 °C while pursuing efforts to limit it below 1.5 °C-has initiated a bottom-up process of iteratively updating nationally determined contributions to reach these long-term goals. Achieving these goals implies a tight limit on cumulative net CO2 emissions, of which residual CO2 emissions from fossil fuels are the greatest impediment. Here, using an ensemble of seven integrated assessment models (IAMs), we explore the determinants of these residual emissions, focusing on sector-level contributions. Even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850-1,150 GtCO2 during 2016-2100, despite carbon prices of US$130-420 per tCO2 by 2030. Thus, 640-950 GtCO2 removal is required for a likely chance of limiting end-of-century warming to 1.5 °C. In the absence of strengthened pre-2030 pledges, long-term CO2 commitments are increased by 160-330 GtCO2, further jeopardizing achievement of the 1.5 °C goal and increasing dependence on CO2 removal.
Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0198-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0198-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022 ItalyPublisher:MDPI AG Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Soheil Shayegh; Johannes Emmerling; Massimo Tavoni;handle: 11311/1251604
International migration is closely tied to demographic, socioeconomic, and environmental factors and their interaction with migration policies. Using a combination of a gravity econometric model and an overlapping generations model, we estimate the probability of bilateral migration among 160 countries in the period of 1960 to 2000 and use these findings to project international migration flows and their implication for income inequality within and between countries in the 21st century under five shared socioeconomic pathways (SSPs). Our results show that international migration not only increases the welfare in developing countries, but also closes the inequality gap within and between low-skilled and high-skilled labor in these countries. In most developed countries on the contrary, international migration increases the inequality gap and slightly reduces output. These changes are not uniform and vary significantly across countries depending on their population growth and human capital development trajectories. Overall, while migration is strongly affected by inequality between developed and developing countries, it has an ambiguous impact on inequality within and between countries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/8/4757/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202203.0218.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 7 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/8/4757/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202203.0218.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 France, United Kingdom, Germany, Netherlands, Austria, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | PRISMA, EC | iDODDLE, EC | NAVIGATEEC| PRISMA ,EC| iDODDLE ,EC| NAVIGATEvan Heerden, Rik; Edelenbosch, Oreane; Daioglou, Vassilis; Le Gallic, Thomas; Baptista, Luiz; Di Bella, Alice; Colelli, Francesco; Emmerling, Johannes; Fragkos, Panagiotis; Hasse, Robin; Hoppe, Johanna; Kishimoto, Paul; Leblanc, Florian; Lefèvre, Julien; Luderer, Gunnar; Marangoni, Giacomo; Mastrucci, Alessio; Pettifor, Hazel; Pietzcker, Robert; Rochedo, Pedro; van Ruijven, Bas; Schaeffer, Roberto; Wilson, Charlie; Yeh, Sonia; Zisarou, Eleftheria; van Vuuren, Detlef;Abstract Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.
IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Austria, Netherlands, France, United Kingdom, Germany, Germany, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCEEC| ADVANCEChristoph Bertram; David L. McCollum; David L. McCollum; Ilkka Keppo; Jessica Jewell; Jessica Jewell; Leonidas Paroussos; Detlef P. van Vuuren; Detlef P. van Vuuren; Nawfal Saadi; Massimo Tavoni; Massimo Tavoni; Vadim Vinichenko; Loïc Berger; Loïc Berger; David E.H.J. Gernaat; David E.H.J. Gernaat; Kostas Fragkiadakis; Johannes Emmerling; Keywan Riahi; Keywan Riahi; Volker Krey;Hopes are high that removing fossil fuel subsidies could help to mitigate climate change by discouraging inefficient energy consumption and levelling the playing field for renewable energy. In September 2016, the G20 countries re-affirmed their 2009 commitment (at the G20 Leaders' Summit) to phase out fossil fuel subsidies and many national governments are using today's low oil prices as an opportunity to do so. In practical terms, this means abandoning policies that decrease the price of fossil fuels and electricity generated from fossil fuels to below normal market prices. However, whether the removal of subsidies, even if implemented worldwide, would have a large impact on climate change mitigation has not been systematically explored. Here we show that removing fossil fuel subsidies would have an unexpectedly small impact on global energy demand and carbon dioxide emissions and would not increase renewable energy use by 2030. Subsidy removal would reduce the carbon price necessary to stabilize greenhouse gas concentration at 550 parts per million by only 2-12 per cent under low oil prices. Removing subsidies in most regions would deliver smaller emission reductions than the Paris Agreement (2015) climate pledges and in some regions global subsidy removal may actually lead to an increase in emissions, owing to either coal replacing subsidized oil and natural gas or natural-gas use shifting from subsidizing, energy-exporting regions to non-subsidizing, importing regions. Our results show that subsidy removal would result in the largest CO2 emission reductions in high-income oil- and gas-exporting regions, where the reductions would exceed the climate pledges of these regions and where subsidy removal would affect fewer people living below the poverty line than in lower-income regions.
RE.PUBLIC@POLIMI Res... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15086/1/Subsidies%20paper%20full%20manuscript%20OA%20%28003%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature25467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 164 citations 164 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15086/1/Subsidies%20paper%20full%20manuscript%20OA%20%28003%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature25467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | CNH2-S: Understanding the..., EC | PRISMANSF| CNH2-S: Understanding the Coupling Between Climate Policy and Ecosystem Change ,EC| PRISMABastien-Olvera, B. A.; Conte, M. N.; Dong, X.; Briceno, T.; Batker, D.; Emmerling, J.; Tavoni, M.; Granella, F.; Moore, F. C.;pmid: 38110573
pmc: PMC10808060
AbstractEcosystems generate a wide range of benefits for humans, including some market goods as well as other benefits that are not directly reflected in market activity1. Climate change will alter the distribution of ecosystems around the world and change the flow of these benefits2,3. However, the specific implications of ecosystem changes for human welfare remain unclear, as they depend on the nature of these changes, the value of the affected benefits and the extent to which communities rely on natural systems for their well-being4. Here we estimate country-level changes in economic production and the value of non-market ecosystem benefits resulting from climate-change-induced shifts in terrestrial vegetation cover, as projected by dynamic global vegetation models (DGVMs) driven by general circulation climate models. Our results show that the annual population-weighted mean global flow of non-market ecosystem benefits valued in the wealth accounts of the World Bank will be reduced by 9.2% in 2100 under the Shared Socioeconomic Pathway SSP2-6.0 with respect to the baseline no climate change scenario and that the global population-weighted average change in gross domestic product (GDP) by 2100 is −1.3% of the baseline GDP. Because lower-income countries are more reliant on natural capital, these GDP effects are regressive. Approximately 90% of these damages are borne by the poorest 50% of countries and regions, whereas the wealthiest 10% experience only 2% of these losses.
Nature arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/7c9887vqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06769-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 2 Powered bymore_vert Nature arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/7c9887vqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06769-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United Kingdom, Netherlands, Netherlands, India, Netherlands, Netherlands, Netherlands, India, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | CD-LINKSEC| CD-LINKSShinichiro Fujimori; Shinichiro Fujimori; Andries F. Hof; Andries F. Hof; Zoi Vrontisi; Nicole J. van den Berg; Nicole J. van den Berg; Johannes Emmerling; Michel G.J. den Elzen; Kornelis Blok; David L. McCollum; David L. McCollum; Wenying Chen; Detlef P. van Vuuren; Detlef P. van Vuuren; Heleen van Soest; Heleen van Soest; Swapnil Shekhar; Saritha Vishwanathan; Alexandre C. Köberle; Alexandre C. Köberle; Laurent Drouet; Roberto Schaeffer; Niklas Höhne;handle: 10044/1/68985 , 11718/25330
Abstract The bottom-up approach of the Nationally Determined Contributions (NDCs) in the Paris Agreement has led countries to self-determine their greenhouse gas (GHG) emission reduction targets. The planned ‘ratcheting-up’ process, which aims to ensure that the NDCs comply with the overall goal of limiting global average temperature increase to well below 2 °C or even 1.5 °C, will most likely include some evaluation of ‘fairness’ of these reduction targets. In the literature, fairness has been discussed around equity principles, for which many different effort-sharing approaches have been proposed. In this research, we analysed how country-level emission targets and carbon budgets can be derived based on such criteria. We apply novel methods directly based on the global carbon budget, and, for comparison, more commonly used methods using GHG mitigation pathways. For both, we studied the following approaches: equal cumulative per capita emissions, contraction and convergence, grandfathering, greenhouse development rights and ability to pay. As the results critically depend on parameter settings, we used the wide authorship from a range of countries included in this paper to determine default settings and sensitivity analyses. Results show that effort-sharing approaches that (i) calculate required reduction targets in carbon budgets (relative to baseline budgets) and/or (ii) take into account historical emissions when determining carbon budgets can lead to (large) negative remaining carbon budgets for developed countries. This is the case for the equal cumulative per capita approach and especially the greenhouse development rights approach. Furthermore, for developed countries, all effort-sharing approaches except grandfathering lead to more stringent budgets than cost-optimal budgets, indicating that cost-optimal approaches do not lead to outcomes that can be regarded as fair according to most effort-sharing approaches.
Climatic Change arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/68985Data sources: Bielefeld Academic Search Engine (BASE)IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15766/1/Berg2019_Article_ImplicationsOfVariousEffort-sh.pdfData sources: Bielefeld Academic Search Engine (BASE)IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25330Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsIIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15766/1/Berg2019_Article_ImplicationsOfVariousEffort-sh.pdfData sources: IIASA PUREDelft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02368-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 171 citations 171 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 18 Powered bymore_vert Climatic Change arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/68985Data sources: Bielefeld Academic Search Engine (BASE)IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15766/1/Berg2019_Article_ImplicationsOfVariousEffort-sh.pdfData sources: Bielefeld Academic Search Engine (BASE)IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25330Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsIIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15766/1/Berg2019_Article_ImplicationsOfVariousEffort-sh.pdfData sources: IIASA PUREDelft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02368-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:IOP Publishing Funded by:EC | SPARCCLEEC| SPARCCLEAuthors: Shouro Dasgupta; Johannes Emmerling; Soheil Shayegh;Abstract The impact of climate change on economic growth has been the subject of numerous studies in recent years, with macro-econometric analyses estimating the effect of rising temperatures on gross domestic product (GDP) growth rates at the country-level. However, the distributional impact of warming on inequality and poverty at the micro-level remains relatively unexplored. In this paper, we investigate the relationship between temperature and inequality in South Africa at the national and sub-national level. Our analysis reveals a significant ∪ -shaped relationship between temperature and inequality indices, with inequality lowest at moderate temperatures (11 ∘C–18 ∘C) and increasing sharply as temperatures increase. We find that the optimal temperatures are lower for inequality measures than for income levels. This indicates that substantial increases in inequality are expected at higher temperatures compared to growth impacts. This effect is particularly noticeable for the poorer segments of the population, whose productivity and wages decline as temperatures increase, while the impact on the richer segments is less significant due to their greater adaptive capacity. In terms of mechanisms, we find that agricultural households are more likely to experience an increase in inequality due to warming. Our findings suggest that global warming has two adverse effects on hot countries: reducing average growth and increasing inequality. We compare the outcomes of the moderate RCP6.0 scenario to a reference scenario without warming and find that by the end of the century, the Gini coefficient in South Africa is expected to increase by 3–6 points, resulting in a potential welfare loss of approximately 50% when combined with the impact of warming on GDP (which alone can reach up to 43% by 2100 in South Africa). Our findings highlight the importance of investigating the distributional effects of climate change at the micro-level, particularly in low- or middle-income countries where vulnerable populations are more susceptible to its impacts.
Environmental Resear... arrow_drop_down Environmental Research LettersArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad0448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Environmental Research LettersArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad0448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 India, Netherlands, Netherlands, Japan, Germany, United Kingdom, Netherlands, Netherlands, Austria, IndiaPublisher:Springer Science and Business Media LLC Funded by:FCT | D4, EC | ENGAGE, EC | CD-LINKSFCT| D4 ,EC| ENGAGE ,EC| CD-LINKSKeii Gi; Matthew Gidden; Shinichiro Fujimori; Kimon Keramidas; George Safonov; Gunnar Luderer; Gunnar Luderer; Michel G.J. den Elzen; Wenying Chen; Kostas Fragkiadakis; Jacques Després; Lara Aleluia Reis; Christoph Bertram; Heleen van Soest; Heleen van Soest; Ken Oshiro; Detlef P. van Vuuren; Detlef P. van Vuuren; Pedro Rochedo; Florian Humpenöder; Falko Ueckerdt; Zoi Vrontisi; Kejun Jiang; Ritu Mathur; Stefan Frank; Johannes Emmerling; Niklas Höhne; Keywan Riahi; Maria Kannavou; Elmar Kriegler; Daniel Huppmann; Laurent Drouet; Oliver Fricko; Gokul Iyer; Mark Roelfsema; Mathijs Harmsen; Mathijs Harmsen; Saritha Vishwanathan; Saritha Vishwanathan; Jae Edmonds; Gabriela Iacobuta; Volker Krey; Roberto Schaeffer; Alexandre C. Köberle; Alexandre C. Köberle;AbstractMany countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.
IIASA PURE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/78888Data sources: Bielefeld Academic Search Engine (BASE)IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25190Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-15414-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 319 citations 319 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/78888Data sources: Bielefeld Academic Search Engine (BASE)IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25190Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-15414-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, Netherlands, Netherlands, AustriaPublisher:Elsevier BV M. Strubegger; Ioanna Mouratiadou; Detlef P. van Vuuren; Detlef P. van Vuuren; Marshall Wise; Samuel Carrara; Samuel Carrara; Robert C. Pietzcker; Nico Bauer; Keywan Riahi; Laurent Drouet; Laurent Drouet; Oliver Fricko; Nils Johnson; Elmar Kriegler; Jiyong Eom; Jiyong Eom; David E.H.J. Gernaat; Harmen Sytze de Boer; Shinichiro Fujimori; Toshihiko Masui; Volker Krey; Petr Havlik; David Klein; Katherine Calvin; Page Kyle; Maarten van den Berg; Vassilis Daioglou; Johannes Emmerling; Johannes Emmerling; Jérôme Hilaire; Giacomo Marangoni; Giacomo Marangoni; James E. Edmonds;Abstract Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomic Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability.
IIASA DARE arrow_drop_down Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 279 citations 279 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.07.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | ENGAGE, EC | NDC ASPECTS, EC | NAVIGATEEC| ENGAGE ,EC| NDC ASPECTS ,EC| NAVIGATEAuthors: Eduardo Müller-Casseres; Florian Leblanc; Maarten van den Berg; Panagiotis Fragkos; +17 AuthorsEduardo Müller-Casseres; Florian Leblanc; Maarten van den Berg; Panagiotis Fragkos; Olivier Dessens; Hesam Naghash; Rebecca Draeger; Thomas Le Gallic; Isabela S. Tagomori; Ioannis Tsiropoulos; Johannes Emmerling; Luiz Bernardo Baptista; Detlef P. van Vuuren; Anastasis Giannousakis; Laurent Drouet; Joana Portugal-Pereira; Harmen-Sytze de Boer; Nikolaos Tsanakas; Pedro R. R. Rochedo; Alexandre Szklo; Roberto Schaeffer;Abstract In recent years, the decarbonisation of international shipping has become an important policy goal. While Integrated Assessment Models (IAMs) are often used to explore climate mitigation strategies, they typically provide little information on international shipping, which accounts for around 0.75 GtCO2/yr. Here, we perform the first multi-IAM analysis of international shipping, drawing on the results of six global models. Results indicate the need for decreasing emissions in the next decades, with reductions up to 88% in 2050. This is primarily achieved through the deployment of low-carbon fuels. Models that represent several potential low-carbon alternatives tend to show a deeper decarbonisation of international shipping, with drop-in biofuels, renewable alcohols and green ammonia standing out as the main substitutes of conventional maritime fuels.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-01997-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-01997-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Austria, Italy, Netherlands, Germany, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | CD-LINKS, EC | ADVANCEEC| CD-LINKS ,EC| ADVANCEDetlef P. van Vuuren; Detlef P. van Vuuren; Petr Havlik; Massimo Tavoni; Massimo Tavoni; Robert C. Pietzcker; Johannes Emmerling; Gokul Iyer; Shinichiro Fujimori; Shinichiro Fujimori; Zoi Vrontisi; Harmen Sytze de Boer; Harmen Sytze de Boer; Christoph Bertram; Joeri Rogelj; Kimon Keramidas; Gunnar Luderer; Keywan Riahi; Elmar Kriegler; Laurent Drouet; Oliver Fricko; Bert Saveyn; Volker Krey; Alban Kitous; Oreane Y. Edelenbosch; Oreane Y. Edelenbosch; Michaja Pehl;handle: 11311/1062759
The Paris Agreement-which is aimed at holding global warming well below 2 °C while pursuing efforts to limit it below 1.5 °C-has initiated a bottom-up process of iteratively updating nationally determined contributions to reach these long-term goals. Achieving these goals implies a tight limit on cumulative net CO2 emissions, of which residual CO2 emissions from fossil fuels are the greatest impediment. Here, using an ensemble of seven integrated assessment models (IAMs), we explore the determinants of these residual emissions, focusing on sector-level contributions. Even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850-1,150 GtCO2 during 2016-2100, despite carbon prices of US$130-420 per tCO2 by 2030. Thus, 640-950 GtCO2 removal is required for a likely chance of limiting end-of-century warming to 1.5 °C. In the absence of strengthened pre-2030 pledges, long-term CO2 commitments are increased by 160-330 GtCO2, further jeopardizing achievement of the 1.5 °C goal and increasing dependence on CO2 removal.
Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0198-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Nature Climate Chang... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-018-0198-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022 ItalyPublisher:MDPI AG Funded by:EC | NAVIGATEEC| NAVIGATEAuthors: Soheil Shayegh; Johannes Emmerling; Massimo Tavoni;handle: 11311/1251604
International migration is closely tied to demographic, socioeconomic, and environmental factors and their interaction with migration policies. Using a combination of a gravity econometric model and an overlapping generations model, we estimate the probability of bilateral migration among 160 countries in the period of 1960 to 2000 and use these findings to project international migration flows and their implication for income inequality within and between countries in the 21st century under five shared socioeconomic pathways (SSPs). Our results show that international migration not only increases the welfare in developing countries, but also closes the inequality gap within and between low-skilled and high-skilled labor in these countries. In most developed countries on the contrary, international migration increases the inequality gap and slightly reduces output. These changes are not uniform and vary significantly across countries depending on their population growth and human capital development trajectories. Overall, while migration is strongly affected by inequality between developed and developing countries, it has an ambiguous impact on inequality within and between countries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/8/4757/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202203.0218.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 7 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/8/4757/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202203.0218.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 France, United Kingdom, Germany, Netherlands, Austria, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | PRISMA, EC | iDODDLE, EC | NAVIGATEEC| PRISMA ,EC| iDODDLE ,EC| NAVIGATEvan Heerden, Rik; Edelenbosch, Oreane; Daioglou, Vassilis; Le Gallic, Thomas; Baptista, Luiz; Di Bella, Alice; Colelli, Francesco; Emmerling, Johannes; Fragkos, Panagiotis; Hasse, Robin; Hoppe, Johanna; Kishimoto, Paul; Leblanc, Florian; Lefèvre, Julien; Luderer, Gunnar; Marangoni, Giacomo; Mastrucci, Alessio; Pettifor, Hazel; Pietzcker, Robert; Rochedo, Pedro; van Ruijven, Bas; Schaeffer, Roberto; Wilson, Charlie; Yeh, Sonia; Zisarou, Eleftheria; van Vuuren, Detlef;Abstract Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.
IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA PURE arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveHAL-Ecole des Ponts ParisTechArticle . 2025License: CC BYData sources: HAL-Ecole des Ponts ParisTechPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2025License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-025-01703-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Austria, Netherlands, France, United Kingdom, Germany, Germany, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ADVANCEEC| ADVANCEChristoph Bertram; David L. McCollum; David L. McCollum; Ilkka Keppo; Jessica Jewell; Jessica Jewell; Leonidas Paroussos; Detlef P. van Vuuren; Detlef P. van Vuuren; Nawfal Saadi; Massimo Tavoni; Massimo Tavoni; Vadim Vinichenko; Loïc Berger; Loïc Berger; David E.H.J. Gernaat; David E.H.J. Gernaat; Kostas Fragkiadakis; Johannes Emmerling; Keywan Riahi; Keywan Riahi; Volker Krey;Hopes are high that removing fossil fuel subsidies could help to mitigate climate change by discouraging inefficient energy consumption and levelling the playing field for renewable energy. In September 2016, the G20 countries re-affirmed their 2009 commitment (at the G20 Leaders' Summit) to phase out fossil fuel subsidies and many national governments are using today's low oil prices as an opportunity to do so. In practical terms, this means abandoning policies that decrease the price of fossil fuels and electricity generated from fossil fuels to below normal market prices. However, whether the removal of subsidies, even if implemented worldwide, would have a large impact on climate change mitigation has not been systematically explored. Here we show that removing fossil fuel subsidies would have an unexpectedly small impact on global energy demand and carbon dioxide emissions and would not increase renewable energy use by 2030. Subsidy removal would reduce the carbon price necessary to stabilize greenhouse gas concentration at 550 parts per million by only 2-12 per cent under low oil prices. Removing subsidies in most regions would deliver smaller emission reductions than the Paris Agreement (2015) climate pledges and in some regions global subsidy removal may actually lead to an increase in emissions, owing to either coal replacing subsidized oil and natural gas or natural-gas use shifting from subsidizing, energy-exporting regions to non-subsidizing, importing regions. Our results show that subsidy removal would result in the largest CO2 emission reductions in high-income oil- and gas-exporting regions, where the reductions would exceed the climate pledges of these regions and where subsidy removal would affect fewer people living below the poverty line than in lower-income regions.
RE.PUBLIC@POLIMI Res... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15086/1/Subsidies%20paper%20full%20manuscript%20OA%20%28003%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature25467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 164 citations 164 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15086/1/Subsidies%20paper%20full%20manuscript%20OA%20%28003%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature25467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | CNH2-S: Understanding the..., EC | PRISMANSF| CNH2-S: Understanding the Coupling Between Climate Policy and Ecosystem Change ,EC| PRISMABastien-Olvera, B. A.; Conte, M. N.; Dong, X.; Briceno, T.; Batker, D.; Emmerling, J.; Tavoni, M.; Granella, F.; Moore, F. C.;pmid: 38110573
pmc: PMC10808060
AbstractEcosystems generate a wide range of benefits for humans, including some market goods as well as other benefits that are not directly reflected in market activity1. Climate change will alter the distribution of ecosystems around the world and change the flow of these benefits2,3. However, the specific implications of ecosystem changes for human welfare remain unclear, as they depend on the nature of these changes, the value of the affected benefits and the extent to which communities rely on natural systems for their well-being4. Here we estimate country-level changes in economic production and the value of non-market ecosystem benefits resulting from climate-change-induced shifts in terrestrial vegetation cover, as projected by dynamic global vegetation models (DGVMs) driven by general circulation climate models. Our results show that the annual population-weighted mean global flow of non-market ecosystem benefits valued in the wealth accounts of the World Bank will be reduced by 9.2% in 2100 under the Shared Socioeconomic Pathway SSP2-6.0 with respect to the baseline no climate change scenario and that the global population-weighted average change in gross domestic product (GDP) by 2100 is −1.3% of the baseline GDP. Because lower-income countries are more reliant on natural capital, these GDP effects are regressive. Approximately 90% of these damages are borne by the poorest 50% of countries and regions, whereas the wealthiest 10% experience only 2% of these losses.
Nature arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/7c9887vqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06769-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 2 Powered bymore_vert Nature arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/7c9887vqData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06769-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United Kingdom, Netherlands, Netherlands, India, Netherlands, Netherlands, Netherlands, India, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | CD-LINKSEC| CD-LINKSShinichiro Fujimori; Shinichiro Fujimori; Andries F. Hof; Andries F. Hof; Zoi Vrontisi; Nicole J. van den Berg; Nicole J. van den Berg; Johannes Emmerling; Michel G.J. den Elzen; Kornelis Blok; David L. McCollum; David L. McCollum; Wenying Chen; Detlef P. van Vuuren; Detlef P. van Vuuren; Heleen van Soest; Heleen van Soest; Swapnil Shekhar; Saritha Vishwanathan; Alexandre C. Köberle; Alexandre C. Köberle; Laurent Drouet; Roberto Schaeffer; Niklas Höhne;handle: 10044/1/68985 , 11718/25330
Abstract The bottom-up approach of the Nationally Determined Contributions (NDCs) in the Paris Agreement has led countries to self-determine their greenhouse gas (GHG) emission reduction targets. The planned ‘ratcheting-up’ process, which aims to ensure that the NDCs comply with the overall goal of limiting global average temperature increase to well below 2 °C or even 1.5 °C, will most likely include some evaluation of ‘fairness’ of these reduction targets. In the literature, fairness has been discussed around equity principles, for which many different effort-sharing approaches have been proposed. In this research, we analysed how country-level emission targets and carbon budgets can be derived based on such criteria. We apply novel methods directly based on the global carbon budget, and, for comparison, more commonly used methods using GHG mitigation pathways. For both, we studied the following approaches: equal cumulative per capita emissions, contraction and convergence, grandfathering, greenhouse development rights and ability to pay. As the results critically depend on parameter settings, we used the wide authorship from a range of countries included in this paper to determine default settings and sensitivity analyses. Results show that effort-sharing approaches that (i) calculate required reduction targets in carbon budgets (relative to baseline budgets) and/or (ii) take into account historical emissions when determining carbon budgets can lead to (large) negative remaining carbon budgets for developed countries. This is the case for the equal cumulative per capita approach and especially the greenhouse development rights approach. Furthermore, for developed countries, all effort-sharing approaches except grandfathering lead to more stringent budgets than cost-optimal budgets, indicating that cost-optimal approaches do not lead to outcomes that can be regarded as fair according to most effort-sharing approaches.
Climatic Change arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/68985Data sources: Bielefeld Academic Search Engine (BASE)IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15766/1/Berg2019_Article_ImplicationsOfVariousEffort-sh.pdfData sources: Bielefeld Academic Search Engine (BASE)IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25330Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsIIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15766/1/Berg2019_Article_ImplicationsOfVariousEffort-sh.pdfData sources: IIASA PUREDelft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02368-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 171 citations 171 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 18 Powered bymore_vert Climatic Change arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/68985Data sources: Bielefeld Academic Search Engine (BASE)IIASA DAREArticle . 2019License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15766/1/Berg2019_Article_ImplicationsOfVariousEffort-sh.pdfData sources: Bielefeld Academic Search Engine (BASE)IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25330Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsIIASA PUREArticle . 2019 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15766/1/Berg2019_Article_ImplicationsOfVariousEffort-sh.pdfData sources: IIASA PUREDelft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-019-02368-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu