- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, Germany, United Kingdom, France, Spain, France, FinlandPublisher:Springer Science and Business Media LLC Davide Cammarano; Davide Cammarano; Matthew P. Reynolds; Fulu Tao; Curtis D. Jones; Bruce A. Kimball; Mikhail A. Semenov; Garry O'Leary; Yan Zhu; David B. Lobell; Pramod K. Aggarwal; Sebastian Gayler; Bruno Basso; Jørgen E. Olesen; Pierre Martre; Pierre Martre; Jordi Doltra; Taru Palosuo; Daniel Wallach; P. V. V. Prasad; Elias Fereres; Frank Ewert; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Ann-Kristin Koehler; Pierre Stratonovitch; Thilo Streck; Roberto C. Izaurralde; Roberto C. Izaurralde; Kurt Christian Kersebaum; Joost Wolf; Claudio O. Stöckle; Zhigan Zhao; Zhigan Zhao; Peter J. Thorburn; Iurii Shcherbak; Iwan Supit; Claas Nendel; Christian Biernath; Eckart Priesack; Enli Wang; Christoph Müller; Gerrit Hoogenboom; Mohamed Jabloun; Margarita Garcia-Vila; L. A. Hunt; Ehsan Eyshi Rezaei; S. Naresh Kumar; Jakarat Anothai; Jakarat Anothai; Katharina Waha; G. De Sanctis; G. De Sanctis; Senthold Asseng; Phillip D. Alderman; Jeffrey W. White; Michael J. Ottman; Alex C. Ruane; Gerard W. Wall;doi: 10.1038/nclimate2470
handle: 10261/158875 , 10568/57488 , 10900/64900
Asseng, S. et al. Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time. We thank the Agricultural Model Intercomparison and Improvement Project and its leaders C. Rosenzweig from NASA Goddard Institute for Space Studies and Columbia University (USA), J. Jones from University of Florida (USA), J. Hatfield from United States Department of Agriculture (USA) and J. Antle from Oregon State University (USA) for support. We also thank M. Lopez from CIMMYT (Turkey), M. Usman Bashir from University of Agriculture, Faisalabad (Pakistan), S. Soufizadeh from Shahid Beheshti University (Iran), and J. Lorgeou and J-C. Deswarte from ARVALIS—Institut du Végétal (France) for assistance with selecting key locations and quantifying regional crop cultivars, anthesis and maturity dates and R. Raymundo for assistance with GIS. S.A. and D.C. received financial support from the International Food Policy Research Institute (IFPRI). C.S. was funded through USDA National Institute for Food and Agriculture award 32011-68002-30191. C.M. received financial support from the KULUNDA project (01LL0905L) and the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (BMBF). F.E. received support from the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (2812ERA115) and E.E.R. was funded through the German Science Foundation (project EW 119/5-1). M.J. and J.E.O. were funded through the FACCE MACSUR project by the Danish Strategic Research Council. K.C.K. and C.N. were funded by the FACCE MACSUR project through the German Federal Ministry of Food and Agriculture (BMEL). F.T., T.P. and R.P.R. received financial support from FACCE MACSUR project funded through the Finnish Ministry of Agriculture and Forestry (MMM); F.T. was also funded through National Natural Science Foundation of China (No. 41071030). C.B. was funded through the Helmholtz project ‘REKLIM—Regional Climate Change: Causes and Effects’ Topic 9: ‘Climate Change and Air Quality’. M.P.R. and P.D.A. received funding from the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). G.O’L. was funded through the Australian Grains Research and Development Corporation and the Department of Environment and Primary Industries Victoria, Australia. R.C.I. was funded by Texas AgriLife Research, Texas A&M University. E.W. and Z.Z. were funded by CSIRO and the Chinese Academy of Sciences (CAS) through the research project ‘Advancing crop yield while reducing the use of water and nitrogen’ and by the CSIRO-MoE PhD Research Program. Peer reviewed
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,648 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
visibility 78visibility views 78 download downloads 7,828 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Pierre Martre; Sibylle Dueri; Jose Rafael Guarin; Frank Ewert; Heidi Webber; Daniel F. Calderini; Gemma Molero; Matthew Reynolds; Daniel J. Miralles; Guillermo A. García; Hamish Brown; M. George; Rob Craigie; Jean-Pierre Cohan; Jean-Charles Deswarte; Gustavo A. Slafer; Francesco Giunta; Davide Cammarano; Roberto Ferrise; Thomas Gaiser; Yujing Gao; Zvi Hochman; Gerrit Hoogenboom; L. A. Hunt; Kurt Christian Kersebaum; Claas Nendel; Gloria Padovan; Alex C. Ruane; Tommaso Stella; Iwan Supit; Amit Kumar Srivastava; Peter Thorburn; Enli Wang; Heidi Webber; Chuang Zhao; Zhigan Zhao; Senthold Asseng;Abstract Increasing global food demand will require more food production without further exceeding the planetary boundaries, while at the same time adapting to climate change. We used an ensemble of wheat simulation models, with sink-source improved traits from the highest-yielding wheat genotypes to quantify potential yield gains and associated N requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The sink-source traits emerged as climate neutral with 16% yield increase with current N fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential, a 52% increase in global average yield under a mid-century RCP8.5 climate scenario, fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil N availability and N use efficiency, along with yield potential.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, France, DenmarkPublisher:Elsevier BV Funded by:SGOV | VARIABILIDAD CLIMATICA MU..., AKA | Pathways linking uncertai..., EC | IMPRESSIONS +1 projectsSGOV| VARIABILIDAD CLIMATICA MULTIESCALAR. IMPACTOS AGRICOLAS Y ECONOMICOS. II EVALUACION INTEGRADA DE RIESGOS CLIMATICOS Y ECONOMICOS: ADAPTACION DE SISTEMAS AGRICOLAS EN ESPAÑA ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESRuiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I. J.; Bindi, M.; Carter, Tim R.; Fronzek, Stefan; Palosuo, T.; Pirttioja, Nina; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J. G.; Jurecka, F.; Kersebaum, K. C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J. R.; Ruget, F.; Semenov, M. A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter; R. P.;Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T), [CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty.
Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, United States, Spain, Netherlands, Italy, Germany, Denmark, FrancePublisher:Elsevier BV Funded by:MIUR, AKA | Pathways linking uncertai..., EC | IMPRESSIONS +2 projectsMIUR ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESM. Ines Minguez; Katharina Waha; Katharina Waha; Senthold Asseng; Cezary Sławiński; Lianhai Wu; Marie-France Destain; Alex C. Ruane; Iwan Supit; Roberto Ferrise; Julien Minet; Per Bodin; Stefan Fronzek; Piotr Baranowski; Françoise Ruget; Louis François; Taru Palosuo; Isik Öztürk; Margarita Ruiz-Ramos; Mattia Sanna; Ingrid Jacquemin; Kurt Christian Kersebaum; Thomas Gaiser; Paola A. Deligios; Manuel Montesino; Fulu Tao; Nina Pirttioja; Jaromir Krzyszczak; Davide Cammarano; Mikhail A. Semenov; Marco Moriondo; Alfredo Rodríguez; Christoph Müller; Samuel Buis; Alessia Perego; Frank Ewert; Chris Kollas; Marco Acutis; Claas Nendel; Petr Hlavinka; Timothy R. Carter; Marco Bindi; Ignacio J. Lorite; Enli Wang; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Benjamin Dumont; Holger Hoffmann; Reimund P. Rötter; Miroslav Trnka;handle: 2434/616106
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9°C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | ERA-HDHL, UKRI | FACCE-JPI Knowledge Hub:M...EC| ERA-HDHL ,UKRI| FACCE-JPI Knowledge Hub:MACSUR-Partner22Authors: Davide Cammarano; Jørgen Eivind Olesen; Katharina Helming; Christine Helen Foyer; +8 AuthorsDavide Cammarano; Jørgen Eivind Olesen; Katharina Helming; Christine Helen Foyer; Martin Schönhart; Gianluca Brunori; Keerthi Kiran Bandru; Marco Bindi; Gloria Padovan; Bo Jellesmark Thorsen; Florian Freund; Diego Abalos;pmid: 37468615
Climate change mitigation in agri-food systems is hindered by the weak interconnection between research, policy and societal action. Modelling tools, together with international superordinate bodies and stakeholder-inclusive assessment frameworks, can support a better alignment between these three pillars of human progress.
Nature Food arrow_drop_down University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-023-00807-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Food arrow_drop_down University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-023-00807-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Elsevier BV Thomas Payne; Bekele Shiferaw; Bekele Shiferaw; Senthold Asseng; Kai Sonder; Richard Robertson; Sika Gbegbelegbe; O. Abdalla; Matthew P. Reynolds; Myriam Adam; Davide Cammarano; Davide Cammarano; U. Chung; U. Chung; Gerald C. Nelson; Gerald C. Nelson;handle: 10568/77210
Abstract Climate change is expected to impact global food supply and food security by affecting growing conditions for agricultural production. Process-based dynamic growth models are important tools to estimate crop yields based on minimum inputs of climate, soil, crop management, and crop cultivar parameters. Using region-specific cultivar parameters is critical when applying crop models at a global scale because cultivars vary in response to climate conditions, soils, and crop management. In this study, parameters were developed for modern cultivars representing all 17 CIMMYT wheat Mega Environments (MEs) using field experimental data and genetic cultivar relationships for the CROPSIM-CERES model in DSSAT v 4.5 (Decision-Support System for Agrotechnology Transfer). Cultivar performance was tested with independent CIMMYT breeding trial field experiments across several locations. Then crop simulations were carried out at 0.5 × 0.5 ° pixels for global wheat-growing areas, using cultivars representing MEs, soil information, region-specific crop management, and initial soil conditions. Aggregated simulated wheat yields and production were compared to reported country yields and production from Food and Agriculture Organization (FAO) statistics, resulting in a Root Mean Square Error (RMSE) of 1.3 t/ha for yield and 2.2 M t/country for country production. Some of the simulated errors are relatively large at country level because of uncertainties in pixel information for climate, soil, and crop management input and partly because of crop model uncertainties. In addition, FAO yield statistics have uncertainties because of incomplete farm reports or poor estimates. Nevertheless, this new cultivar-specific, partially-validated global baseline simulation enables new studies on issues of food security, agricultural technology, and breeding advancement impacts combined with climate change at a global scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2016.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2016.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Publisher:Dryad Digital Repository Authors: Basso, Bruno; Giola, Pietro; Dumont, Benjamin; De Antoni Migliorati, Massimiliano; +3 AuthorsBasso, Bruno; Giola, Pietro; Dumont, Benjamin; De Antoni Migliorati, Massimiliano; Cammarano, Davide; Pruneddu, Giovanni; Giunta, Francesco;Tar archive file that contains SALUS model, input and output files.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.92257/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.92257/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, United States, FrancePublisher:Elsevier BV Authors: Raymundo, R.; Asseng, Senthold; Cammarano, Davide; Quiróz, R.;handle: 10568/64910
Many crop models have been developed for potato, and a few for sweet potato, and yam. More than 30 potato models, two sweet potato models, and three yam models are described in the literature, and each differ in model structure. Some potato models have been applied to studies of nitrogen fertilizer, irrigation management, and climate change impact, but most of these models have never been validated with field measurements. The nitrogen dynamics of potato models CROPSYSTVB-CSPOTATO, EXpert-N-SPASS, and LINTUL-NPOTATO have been tested with some field data. LPOTCO and AQUACROP are two potato models that have been tested under elevated atmospheric CO2 conditions. None of the models have ever been tested with high temperature or heat stress data. The most tested and applied potato models include versions of LINTUL and SUBSTOR-Potato. Two sweet potato models, MADHURAM and SPOTCOMS, and two yam models, CROPSYSTVB-Yam and EPIC-Yam had limited field-testing under current climate conditions; however, these sweet potato and yam models are not ready for climate change impact assessments. To prepare potato, sweet potato, and yam models for climate change impact assessments, they need to be (i) calibrated with modern cultivars across agro-climatic zones; (ii) tested and improved with crop physiology and dynamic measurements of phenology, growth, partitioning, and water and nitrogen uptake under different crop management and environments; and (iii) tested and improved with field studies of crop responses to climate factors, including elevated CO2, water stress, increased temperature, heat stress, and combinations of these. Such extensive model testing and improvement with field experiments require a coordinated international effort and long-term commitment to potato, sweet potato, and yam research.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/64910Data sources: Bielefeld Academic Search Engine (BASE)University of Florida: Digital Library CenterArticle . 2014License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00539226/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2014.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/64910Data sources: Bielefeld Academic Search Engine (BASE)University of Florida: Digital Library CenterArticle . 2014License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00539226/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2014.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, France, Australia, Finland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | AGREENSKILLSEC| AGREENSKILLSAuthors: Ann-Kristin Koehler; Peter J. Thorburn; Margarita Garcia-Vila; Margarita Garcia-Vila; +62 AuthorsAnn-Kristin Koehler; Peter J. Thorburn; Margarita Garcia-Vila; Margarita Garcia-Vila; L. A. Hunt; L. A. Hunt; Bruce A. Kimball; Ehsan Eyshi Rezaei; Davide Cammarano; Davide Cammarano; Mikhail A. Semenov; Michael J. Ottman; Curtis D. Jones; Frank Ewert; Gerard W. Wall; Garry O'Leary; Pierre Martre; Jordi Doltra; Taru Palosuo; Daniel Wallach; Mohamed Jabloun; Iurii Shcherbak; Iurii Shcherbak; Matthew P. Reynolds; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Dominique Ripoche; Bruno Basso; Phillip D. Alderman; Phillip D. Alderman; Jeffrey W. White; Andrea Maiorano; Katharina Waha; Katharina Waha; Jørgen E. Olesen; Senthold Asseng; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Elias Fereres; Elias Fereres; Kurt Christian Kersebaum; Claudio O. Stöckle; Roberto C. Izaurralde; Jakarat Anothai; Jakarat Anothai; Giacomo De Sanctis; Yan Zhu; Pramod K. Aggarwal; Claas Nendel; Thilo Streck; Fulu Tao; Sebastian Gayler; Eckart Priesack; Enli Wang; Zhimin Wang; Iwan Supit; Christian Biernath; Soora Naresh Kumar; Alex C. Ruane; Leilei Liu; Joost Wolf; Christoph Müller; Gerrit Hoogenboom; Gerrit Hoogenboom;Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Nature Plants arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nplants.2017.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 206 citations 206 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 28visibility views 28 download downloads 23 Powered bymore_vert Nature Plants arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nplants.2017.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Elsevier BV Tao, Fulu; Rötter, Reimund P.; Palosuo, Taru; Diaz-Ambrona, C. G. H.; Minguez, M. Ines; Semenov, Mikhail A.; Kersebaum, Kurt Christian; Nendel, Claas; Cammarano, Davide; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodriguez, Lucia; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G.; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Schulman, Alan H.;Abstract Climate change and its associated higher frequency and severity of adverse weather events require genotypic adaptation. Process-based ecophysiological modelling offers a powerful means to better target and accelerate development of new crop cultivars. Barley ( Hordeum vulgare L.) is an important crop throughout the world, and a good model for study of the genetics of stress adaptation because many quantitative trait loci and candidate genes for biotic and abiotic stress tolerance have been identified in it. Here, we developed a new approach to design future crop ideotypes using an ensemble of eight barley simulation models (i.e. APSIM, CropSyst, HERMES, MCWLA, MONICA, SIMPLACE, SiriusQuality , and WOFOST), and applied it to design climate-resilient barley ideotypes for Boreal and Mediterranean climatic zones in Europe. The results showed that specific barley genotypes, represented by sets of cultivar parameters in the crop models, could be promising under future climate change conditions, resulting in increased yields and low inter-annual yield variability. In contrast, other genotypes could result in substantial yield declines. The most favorable climate-zone-specific barley ideotypes were further proposed, having combinations of several key genetic traits in terms of phenology, leaf growth, photosynthesis, drought tolerance, and grain formation. For both Boreal and Mediterranean climatic zones, barley ideotypes under future climatic conditions should have a longer reproductive growing period, lower leaf senescence rate, larger radiation use efficiency or maximum assimilation rate, and higher drought tolerance. Such characteristics can produce substantial positive impacts on yields under contrasting conditions. Moreover, barley ideotypes should have a low photoperiod and high vernalization sensitivity for the Boreal climatic zone; for the Mediterranean, in contrast, it should have a low photoperiod and low vernalization sensitivity. The drought-tolerance trait is more beneficial for the Mediterranean than for the Boreal climatic zone. Our study demonstrates a sound approach to design future barley ideotypes based on an ensemble of well-tested, diverse crop models and on integration of knowledge from multiple disciplines. The robustness of model-aided ideotypes design can be further enhanced by continuously improving crop models and enhancing information exchange between modellers, agro-meteorologists, geneticists, physiologists, and plant breeders.
Hyper Article en Lig... arrow_drop_down European Journal of AgronomyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down European Journal of AgronomyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, Germany, United Kingdom, France, Spain, France, FinlandPublisher:Springer Science and Business Media LLC Davide Cammarano; Davide Cammarano; Matthew P. Reynolds; Fulu Tao; Curtis D. Jones; Bruce A. Kimball; Mikhail A. Semenov; Garry O'Leary; Yan Zhu; David B. Lobell; Pramod K. Aggarwal; Sebastian Gayler; Bruno Basso; Jørgen E. Olesen; Pierre Martre; Pierre Martre; Jordi Doltra; Taru Palosuo; Daniel Wallach; P. V. V. Prasad; Elias Fereres; Frank Ewert; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Ann-Kristin Koehler; Pierre Stratonovitch; Thilo Streck; Roberto C. Izaurralde; Roberto C. Izaurralde; Kurt Christian Kersebaum; Joost Wolf; Claudio O. Stöckle; Zhigan Zhao; Zhigan Zhao; Peter J. Thorburn; Iurii Shcherbak; Iwan Supit; Claas Nendel; Christian Biernath; Eckart Priesack; Enli Wang; Christoph Müller; Gerrit Hoogenboom; Mohamed Jabloun; Margarita Garcia-Vila; L. A. Hunt; Ehsan Eyshi Rezaei; S. Naresh Kumar; Jakarat Anothai; Jakarat Anothai; Katharina Waha; G. De Sanctis; G. De Sanctis; Senthold Asseng; Phillip D. Alderman; Jeffrey W. White; Michael J. Ottman; Alex C. Ruane; Gerard W. Wall;doi: 10.1038/nclimate2470
handle: 10261/158875 , 10568/57488 , 10900/64900
Asseng, S. et al. Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time. We thank the Agricultural Model Intercomparison and Improvement Project and its leaders C. Rosenzweig from NASA Goddard Institute for Space Studies and Columbia University (USA), J. Jones from University of Florida (USA), J. Hatfield from United States Department of Agriculture (USA) and J. Antle from Oregon State University (USA) for support. We also thank M. Lopez from CIMMYT (Turkey), M. Usman Bashir from University of Agriculture, Faisalabad (Pakistan), S. Soufizadeh from Shahid Beheshti University (Iran), and J. Lorgeou and J-C. Deswarte from ARVALIS—Institut du Végétal (France) for assistance with selecting key locations and quantifying regional crop cultivars, anthesis and maturity dates and R. Raymundo for assistance with GIS. S.A. and D.C. received financial support from the International Food Policy Research Institute (IFPRI). C.S. was funded through USDA National Institute for Food and Agriculture award 32011-68002-30191. C.M. received financial support from the KULUNDA project (01LL0905L) and the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (BMBF). F.E. received support from the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (2812ERA115) and E.E.R. was funded through the German Science Foundation (project EW 119/5-1). M.J. and J.E.O. were funded through the FACCE MACSUR project by the Danish Strategic Research Council. K.C.K. and C.N. were funded by the FACCE MACSUR project through the German Federal Ministry of Food and Agriculture (BMEL). F.T., T.P. and R.P.R. received financial support from FACCE MACSUR project funded through the Finnish Ministry of Agriculture and Forestry (MMM); F.T. was also funded through National Natural Science Foundation of China (No. 41071030). C.B. was funded through the Helmholtz project ‘REKLIM—Regional Climate Change: Causes and Effects’ Topic 9: ‘Climate Change and Air Quality’. M.P.R. and P.D.A. received funding from the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). G.O’L. was funded through the Australian Grains Research and Development Corporation and the Department of Environment and Primary Industries Victoria, Australia. R.C.I. was funded by Texas AgriLife Research, Texas A&M University. E.W. and Z.Z. were funded by CSIRO and the Chinese Academy of Sciences (CAS) through the research project ‘Advancing crop yield while reducing the use of water and nitrogen’ and by the CSIRO-MoE PhD Research Program. Peer reviewed
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,648 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
visibility 78visibility views 78 download downloads 7,828 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Funded by:CO | BUILDING A FRAMEWORK FOR ...CO| BUILDING A FRAMEWORK FOR POTENTIAL KERNEL WEIGHT AND GRAIN NUMBER DETERMINATION IN GRAIN CROPS: RELATIONSHIP BETWEEN EXPANSIN PROTEINS AND YIELD COMPONENTS IN SUNFLOWER (HELIANTHUS ANNUUS L.)Pierre Martre; Sibylle Dueri; Jose Rafael Guarin; Frank Ewert; Heidi Webber; Daniel F. Calderini; Gemma Molero; Matthew Reynolds; Daniel J. Miralles; Guillermo A. García; Hamish Brown; M. George; Rob Craigie; Jean-Pierre Cohan; Jean-Charles Deswarte; Gustavo A. Slafer; Francesco Giunta; Davide Cammarano; Roberto Ferrise; Thomas Gaiser; Yujing Gao; Zvi Hochman; Gerrit Hoogenboom; L. A. Hunt; Kurt Christian Kersebaum; Claas Nendel; Gloria Padovan; Alex C. Ruane; Tommaso Stella; Iwan Supit; Amit Kumar Srivastava; Peter Thorburn; Enli Wang; Heidi Webber; Chuang Zhao; Zhigan Zhao; Senthold Asseng;Abstract Increasing global food demand will require more food production without further exceeding the planetary boundaries, while at the same time adapting to climate change. We used an ensemble of wheat simulation models, with sink-source improved traits from the highest-yielding wheat genotypes to quantify potential yield gains and associated N requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The sink-source traits emerged as climate neutral with 16% yield increase with current N fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential, a 52% increase in global average yield under a mid-century RCP8.5 climate scenario, fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil N availability and N use efficiency, along with yield potential.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-2667076/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, France, DenmarkPublisher:Elsevier BV Funded by:SGOV | VARIABILIDAD CLIMATICA MU..., AKA | Pathways linking uncertai..., EC | IMPRESSIONS +1 projectsSGOV| VARIABILIDAD CLIMATICA MULTIESCALAR. IMPACTOS AGRICOLAS Y ECONOMICOS. II EVALUACION INTEGRADA DE RIESGOS CLIMATICOS Y ECONOMICOS: ADAPTACION DE SISTEMAS AGRICOLAS EN ESPAÑA ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESRuiz-Ramos, M.; Ferrise, R.; Rodriguez, A.; Lorite, I. J.; Bindi, M.; Carter, Tim R.; Fronzek, Stefan; Palosuo, T.; Pirttioja, Nina; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Höhn, J. G.; Jurecka, F.; Kersebaum, K. C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J. R.; Ruget, F.; Semenov, M. A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Rötter; R. P.;Adaptation of crops to climate change has to be addressed locally due to the variability of soil, climate and the specific socio-economic settings influencing farm management decisions. Adaptation of rainfed cropping systems in the Mediterranean is especially challenging due to the projected decline in precipitation in the coming decades, which will increase the risk of droughts. Methods that can help explore uncertainties in climate projections and crop modelling, such as impact response surfaces (IRSs) and ensemble modelling, can then be valuable for identifying effective adaptations. Here, an ensemble of 17 crop models was used to simulate a total of 54 adaptation options for rainfed winter wheat (Triticum aestivum) at Lleida (NE Spain). To support the ensemble building, an ex post quality check of model simulations based on several criteria was performed. Those criteria were based on the “According to Our Current Knowledge” (AOCK) concept, which has been formalized here. Adaptations were based on changes in cultivars and management regarding phenology, vernalization, sowing date and irrigation. The effects of adaptation options under changed precipitation (P), temperature (T), [CO2] and soil type were analysed by constructing response surfaces, which we termed, in accordance with their specific purpose, adaptation response surfaces (ARSs). These were created to assess the effect of adaptations through a range of plausible P, T and [CO2] perturbations. The results indicated that impacts of altered climate were predominantly negative. No single adaptation was capable of overcoming the detrimental effect of the complex interactions imposed by the P, T and [CO2] perturbations except for supplementary irrigation (sI), which reduced the potential impacts under most of the perturbations. Yet, a combination of adaptations for dealing with climate change demonstrated that effective adaptation is possible at Lleida. Combinations based on a cultivar without vernalization requirements showed good and wide adaptation potential. Few combined adaptation options performed well under rainfed conditions. However, a single sI was sufficient to develop a high adaptation potential, including options mainly based on spring wheat, current cycle duration and early sowing date. Depending on local environment (e.g. soil type), many of these adaptations can maintain current yield levels under moderate changes in T and P, and some also under strong changes. We conclude that ARSs can offer a useful tool for supporting planning of field level adaptation under conditions of high uncertainty.
Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Agricultural Systems arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Finland, United States, Spain, Netherlands, Italy, Germany, Denmark, FrancePublisher:Elsevier BV Funded by:MIUR, AKA | Pathways linking uncertai..., EC | IMPRESSIONS +2 projectsMIUR ,AKA| Pathways linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,EC| IMPRESSIONS ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMES ,AKA| Pathways for linking uncertainties in model projections of climate and its effects / Consortium: PLUMESM. Ines Minguez; Katharina Waha; Katharina Waha; Senthold Asseng; Cezary Sławiński; Lianhai Wu; Marie-France Destain; Alex C. Ruane; Iwan Supit; Roberto Ferrise; Julien Minet; Per Bodin; Stefan Fronzek; Piotr Baranowski; Françoise Ruget; Louis François; Taru Palosuo; Isik Öztürk; Margarita Ruiz-Ramos; Mattia Sanna; Ingrid Jacquemin; Kurt Christian Kersebaum; Thomas Gaiser; Paola A. Deligios; Manuel Montesino; Fulu Tao; Nina Pirttioja; Jaromir Krzyszczak; Davide Cammarano; Mikhail A. Semenov; Marco Moriondo; Alfredo Rodríguez; Christoph Müller; Samuel Buis; Alessia Perego; Frank Ewert; Chris Kollas; Marco Acutis; Claas Nendel; Petr Hlavinka; Timothy R. Carter; Marco Bindi; Ignacio J. Lorite; Enli Wang; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Bruno Basso; Benjamin Dumont; Holger Hoffmann; Reimund P. Rötter; Miroslav Trnka;handle: 2434/616106
Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9°C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Florida: Digital Library CenterArticle . 2018License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00592743/00001Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agsy.2017.08.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Springer Science and Business Media LLC Funded by:EC | ERA-HDHL, UKRI | FACCE-JPI Knowledge Hub:M...EC| ERA-HDHL ,UKRI| FACCE-JPI Knowledge Hub:MACSUR-Partner22Authors: Davide Cammarano; Jørgen Eivind Olesen; Katharina Helming; Christine Helen Foyer; +8 AuthorsDavide Cammarano; Jørgen Eivind Olesen; Katharina Helming; Christine Helen Foyer; Martin Schönhart; Gianluca Brunori; Keerthi Kiran Bandru; Marco Bindi; Gloria Padovan; Bo Jellesmark Thorsen; Florian Freund; Diego Abalos;pmid: 37468615
Climate change mitigation in agri-food systems is hindered by the weak interconnection between research, policy and societal action. Modelling tools, together with international superordinate bodies and stakeholder-inclusive assessment frameworks, can support a better alignment between these three pillars of human progress.
Nature Food arrow_drop_down University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-023-00807-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Food arrow_drop_down University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-023-00807-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Elsevier BV Thomas Payne; Bekele Shiferaw; Bekele Shiferaw; Senthold Asseng; Kai Sonder; Richard Robertson; Sika Gbegbelegbe; O. Abdalla; Matthew P. Reynolds; Myriam Adam; Davide Cammarano; Davide Cammarano; U. Chung; U. Chung; Gerald C. Nelson; Gerald C. Nelson;handle: 10568/77210
Abstract Climate change is expected to impact global food supply and food security by affecting growing conditions for agricultural production. Process-based dynamic growth models are important tools to estimate crop yields based on minimum inputs of climate, soil, crop management, and crop cultivar parameters. Using region-specific cultivar parameters is critical when applying crop models at a global scale because cultivars vary in response to climate conditions, soils, and crop management. In this study, parameters were developed for modern cultivars representing all 17 CIMMYT wheat Mega Environments (MEs) using field experimental data and genetic cultivar relationships for the CROPSIM-CERES model in DSSAT v 4.5 (Decision-Support System for Agrotechnology Transfer). Cultivar performance was tested with independent CIMMYT breeding trial field experiments across several locations. Then crop simulations were carried out at 0.5 × 0.5 ° pixels for global wheat-growing areas, using cultivars representing MEs, soil information, region-specific crop management, and initial soil conditions. Aggregated simulated wheat yields and production were compared to reported country yields and production from Food and Agriculture Organization (FAO) statistics, resulting in a Root Mean Square Error (RMSE) of 1.3 t/ha for yield and 2.2 M t/country for country production. Some of the simulated errors are relatively large at country level because of uncertainties in pixel information for climate, soil, and crop management input and partly because of crop model uncertainties. In addition, FAO yield statistics have uncertainties because of incomplete farm reports or poor estimates. Nevertheless, this new cultivar-specific, partially-validated global baseline simulation enables new studies on issues of food security, agricultural technology, and breeding advancement impacts combined with climate change at a global scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2016.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2016.06.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Publisher:Dryad Digital Repository Authors: Basso, Bruno; Giola, Pietro; Dumont, Benjamin; De Antoni Migliorati, Massimiliano; +3 AuthorsBasso, Bruno; Giola, Pietro; Dumont, Benjamin; De Antoni Migliorati, Massimiliano; Cammarano, Davide; Pruneddu, Giovanni; Giunta, Francesco;Tar archive file that contains SALUS model, input and output files.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.92257/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.92257/1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, United States, FrancePublisher:Elsevier BV Authors: Raymundo, R.; Asseng, Senthold; Cammarano, Davide; Quiróz, R.;handle: 10568/64910
Many crop models have been developed for potato, and a few for sweet potato, and yam. More than 30 potato models, two sweet potato models, and three yam models are described in the literature, and each differ in model structure. Some potato models have been applied to studies of nitrogen fertilizer, irrigation management, and climate change impact, but most of these models have never been validated with field measurements. The nitrogen dynamics of potato models CROPSYSTVB-CSPOTATO, EXpert-N-SPASS, and LINTUL-NPOTATO have been tested with some field data. LPOTCO and AQUACROP are two potato models that have been tested under elevated atmospheric CO2 conditions. None of the models have ever been tested with high temperature or heat stress data. The most tested and applied potato models include versions of LINTUL and SUBSTOR-Potato. Two sweet potato models, MADHURAM and SPOTCOMS, and two yam models, CROPSYSTVB-Yam and EPIC-Yam had limited field-testing under current climate conditions; however, these sweet potato and yam models are not ready for climate change impact assessments. To prepare potato, sweet potato, and yam models for climate change impact assessments, they need to be (i) calibrated with modern cultivars across agro-climatic zones; (ii) tested and improved with crop physiology and dynamic measurements of phenology, growth, partitioning, and water and nitrogen uptake under different crop management and environments; and (iii) tested and improved with field studies of crop responses to climate factors, including elevated CO2, water stress, increased temperature, heat stress, and combinations of these. Such extensive model testing and improvement with field experiments require a coordinated international effort and long-term commitment to potato, sweet potato, and yam research.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/64910Data sources: Bielefeld Academic Search Engine (BASE)University of Florida: Digital Library CenterArticle . 2014License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00539226/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2014.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/64910Data sources: Bielefeld Academic Search Engine (BASE)University of Florida: Digital Library CenterArticle . 2014License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00539226/00001Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fcr.2014.06.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, France, Australia, Finland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | AGREENSKILLSEC| AGREENSKILLSAuthors: Ann-Kristin Koehler; Peter J. Thorburn; Margarita Garcia-Vila; Margarita Garcia-Vila; +62 AuthorsAnn-Kristin Koehler; Peter J. Thorburn; Margarita Garcia-Vila; Margarita Garcia-Vila; L. A. Hunt; L. A. Hunt; Bruce A. Kimball; Ehsan Eyshi Rezaei; Davide Cammarano; Davide Cammarano; Mikhail A. Semenov; Michael J. Ottman; Curtis D. Jones; Frank Ewert; Gerard W. Wall; Garry O'Leary; Pierre Martre; Jordi Doltra; Taru Palosuo; Daniel Wallach; Mohamed Jabloun; Iurii Shcherbak; Iurii Shcherbak; Matthew P. Reynolds; Reimund P. Rötter; Andrew J. Challinor; Andrew J. Challinor; Dominique Ripoche; Bruno Basso; Phillip D. Alderman; Phillip D. Alderman; Jeffrey W. White; Andrea Maiorano; Katharina Waha; Katharina Waha; Jørgen E. Olesen; Senthold Asseng; Pierre Stratonovitch; Zhigan Zhao; Zhigan Zhao; Elias Fereres; Elias Fereres; Kurt Christian Kersebaum; Claudio O. Stöckle; Roberto C. Izaurralde; Jakarat Anothai; Jakarat Anothai; Giacomo De Sanctis; Yan Zhu; Pramod K. Aggarwal; Claas Nendel; Thilo Streck; Fulu Tao; Sebastian Gayler; Eckart Priesack; Enli Wang; Zhimin Wang; Iwan Supit; Christian Biernath; Soora Naresh Kumar; Alex C. Ruane; Leilei Liu; Joost Wolf; Christoph Müller; Gerrit Hoogenboom; Gerrit Hoogenboom;Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Nature Plants arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nplants.2017.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 206 citations 206 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 28visibility views 28 download downloads 23 Powered bymore_vert Nature Plants arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nplants.2017.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Elsevier BV Tao, Fulu; Rötter, Reimund P.; Palosuo, Taru; Diaz-Ambrona, C. G. H.; Minguez, M. Ines; Semenov, Mikhail A.; Kersebaum, Kurt Christian; Nendel, Claas; Cammarano, Davide; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodriguez, Lucia; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G.; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Schulman, Alan H.;Abstract Climate change and its associated higher frequency and severity of adverse weather events require genotypic adaptation. Process-based ecophysiological modelling offers a powerful means to better target and accelerate development of new crop cultivars. Barley ( Hordeum vulgare L.) is an important crop throughout the world, and a good model for study of the genetics of stress adaptation because many quantitative trait loci and candidate genes for biotic and abiotic stress tolerance have been identified in it. Here, we developed a new approach to design future crop ideotypes using an ensemble of eight barley simulation models (i.e. APSIM, CropSyst, HERMES, MCWLA, MONICA, SIMPLACE, SiriusQuality , and WOFOST), and applied it to design climate-resilient barley ideotypes for Boreal and Mediterranean climatic zones in Europe. The results showed that specific barley genotypes, represented by sets of cultivar parameters in the crop models, could be promising under future climate change conditions, resulting in increased yields and low inter-annual yield variability. In contrast, other genotypes could result in substantial yield declines. The most favorable climate-zone-specific barley ideotypes were further proposed, having combinations of several key genetic traits in terms of phenology, leaf growth, photosynthesis, drought tolerance, and grain formation. For both Boreal and Mediterranean climatic zones, barley ideotypes under future climatic conditions should have a longer reproductive growing period, lower leaf senescence rate, larger radiation use efficiency or maximum assimilation rate, and higher drought tolerance. Such characteristics can produce substantial positive impacts on yields under contrasting conditions. Moreover, barley ideotypes should have a low photoperiod and high vernalization sensitivity for the Boreal climatic zone; for the Mediterranean, in contrast, it should have a low photoperiod and low vernalization sensitivity. The drought-tolerance trait is more beneficial for the Mediterranean than for the Boreal climatic zone. Our study demonstrates a sound approach to design future barley ideotypes based on an ensemble of well-tested, diverse crop models and on integration of knowledge from multiple disciplines. The robustness of model-aided ideotypes design can be further enhanced by continuously improving crop models and enhancing information exchange between modellers, agro-meteorologists, geneticists, physiologists, and plant breeders.
Hyper Article en Lig... arrow_drop_down European Journal of AgronomyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down European Journal of AgronomyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu