- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 France, France, GermanyPublisher:Frontiers Media SA Lecourieux, Fatma; Kappel, Christian; Pieri, Philippe; Charon, Justine; Pillet, Jérémy; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Lecourieux, David;Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+ 8°C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, γ-aminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," "protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HT-induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation.
Frontiers in Plant S... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2017License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2017.00053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 107 citations 107 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2017License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2017.00053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Italy, FrancePublisher:Proceedings of the National Academy of Sciences Authors: van Leeuwen, Cornelis; Schultz, Hans R.; Garcia de Cortazar-Atauri, Iñaki; Duchêne, Eric; +9 Authorsvan Leeuwen, Cornelis; Schultz, Hans R.; Garcia de Cortazar-Atauri, Iñaki; Duchêne, Eric; Ollat, Nathalie; Pieri, Philippe; Bois, Benjamin; Goutouly, Jean-Pascal; Quénol, Hervé; Touzard, Jean-Marc; Malheiro, Aureliano C.; Bavaresco, Luigi; Delrot, Serge;Hannah et al. (1) recently published a comprehensive study showing substantial impacts of climate change on viticultural suitability, leading to potential ecological issues. We agree that expansion of viticulture into new areas can lead to a decrease in biodiversity and that an increase in water use for irrigation might lead to major freshwater conservation impacts. However, we disagree with the alarming statement that suitability for winegrowing of main wine-producing areas worldwide will dramatically decrease over the next 40 y. We point out major methodological flaws in ref. 1, mostly linked to (i) the misuse of bibliographical data to compute suitability index, (ii) underestimation of adaptations of viticulture to warmer conditions, and (iii) the inadequacy of the monthly time step in the …
Proceedings of the N... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2013Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1307927110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2013Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1307927110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Universite de Bordeaux Wu, Jing; Drappier, Virginie; Hilbert, Ghislaine; Guillaumie, Sabine; Dai, Zhanwu; Gény, Laurence; Delrot, Serge; Darriet, Philippe; Thibon, Cécile; Pieri, Philippe;Context and purpose of the study: Like in other wine producing regions around the world, Bordeaux vineyards already experience the effects of climate change. Recent trends as well as model outputs for the future strongly support an increase of average and extreme temperatures. For the maturation period, this increase will by far exceed mean atmospheric temperature increase, as the ripening period will occur earlier in hotter climatic conditions. Therefore, a detrimental secondary metabolism response is expected in grape berries, and of particular concern are the impacts on phenolics and aromas and aroma precursors. The effects of high temperatures on secondary metabolism control have been partly characterized for phenolics, however mostly in artificial growing conditions, while little is known with respect to aromas. A better understanding of how high temperatures influence grape berry secondary metabolites could help vineyard growers to adapt to climate change and maintain wine quality.Material and methods: A two-year field study was carried out in 2015 and 2016 in a vineyard in Bordeaux, France. Two treatments, heated (H) and control (C), were applied to two varieties, Cabernet-Sauvignon and Sauvignon blanc, from fruit-set to maturity. Field heating was achieved by a very local greenhouse effect applied to the bottom of the rows, by enclosing most of the underlying soil surface by polycarbonate shields. As the training system was vertically trellised, the heated volume surrounded most of the bunches but did not disturb most of the leaves in the canopy. This simple and robust setup allowed an increase of berry temperature by about +1.5°C in mean value, up to +5°C at times during clear sky days. This moderate increase of temperature was indicative of the predicted future climatic conditions for the mid-21st century. Berry samples were collected at 4 time points from bunch closure to maturity for each cultivar and treatment. Primary and secondary metabolites were measured in whole berries or skins.Results and conclusions: With this moderate temperature increase, primary metabolite content in berries did not change significantly. In H samples, anthocyanins were reduced and tannins increased before veraison, and both decreased thereafter. H samples also exhibited lower concentrations of some amino acids, especially alanine, serine and phenylalanine. IBMP (2-methoxy-3-isobutylpyrazine) concentrations were also reduced in H samples of Cabernet-Sauvignon, in both seasons, especially at bunch closure stage, but the differences diminished at full maturity. For thiol 3-sulfanyl hexanol precursors, H samples again exhibited much lower concentrations for both varieties, with weak differences at early stages that increased at later stages (up to -70% decline at maturity in 2015 for Sauvignon blanc). These results demonstrate the potential negative impact of elevated temperature on polyphenols and aroma quality of grape berries.Significance and impact of the study: For viticulture to adapt to new climatic conditions, the negative impacts of high temperature on secondary metabolites and aromas, and therefore on wine quality, need to be contemplated. Thus, already established or new vineyard plantings must prepare and consider practices able to mitigate these impacts, for instance practices that increase bunch shading.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2019.53.2.2434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2019.53.2.2434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Universite de Bordeaux van Leeuwen, Cornelis; Pieri, Philippe; Gowdy, Mark; Ollat, Nathalie; Roby, Jean Philippe;Aims: Climate change imposes increasingly warm and dry conditions in most winegrowing regions. Mediterranean vineyards are particularly vulnerable and have registered, in most situations, declining yields over the past years. Although a majority of Mediterranean vineyards are still dry-farmed, yields can be increased by the implementation of irrigation. However, irrigation has an impact on increasingly affected water resources. An alternative solution to irrigation can be the adaptation of training systems. As can be shown by water balance modeling, low density non-irrigated vineyards are much less vulnerable to climatic drought compared to medium or high density vineyards. And while yields tend to be lower in low density vineyards, so are production costs. The aim of this study is to investigate to what extent low density vineyards can be a sustainable and cost effective adaptation for grape growing in dry climates.Methods and results: A water balance model was applied to conceptual vineyards with different soil water holding capacities and different planting densities over recent past (1981-2010) and near future (2041-2070) climatic conditions for two winegrowing scenarios (Cabernet-Sauvignon in Bordeaux and Grenache in Avignon, Côtes du Rhône). Row spacings of 2.0, 3.0 and 4.0 m were investigated for vineyards with 100, 200 and 300 mm total transpirable soil water (TTSW), while inter-vine spacing, vine architecture, and canopy height were kept similar. Projected yields were estimated to vary according to vine density and water deficit based on a meta-analysis of data published in the literature. Production costs were calculated according to an operation-based costing methodology and compared among the different scenarios on a cost per hectare basis. Gross profit per hectare, defined as grape sales revenue minus production costs, was then computed for two grape sale revenue scenarios (1 €/kg and 3 €/kg). The modeled average fraction of transpirable soil water (FTSW) varied across the different winegrowing scenarios, climate periods (recent past or near future), and TTSW and row spacing assumptions. In soils with 200 or 300 mm TTSW, the 30-day average FTSW prior to modeled grape harvest roughly doubled when 4.0 m versus 2.0 m spacing was assumed in both the recent past and near future climate scenarios. In soils with 100 mm TTSW, water deficit was more severe overall and the effect of row spacing on average FTSW was less pronounced. Changes in projected yields were estimated as a function of vine density and FTSW based on relationships published in the literature. Yields decreased with decreasing vine density and increasing water deficits, while production costs decreased with decreasing vine density. When the assumed revenue from grape sales was lower (1 €/kg), the effect of reduced production cost savings outweighed the loss in revenue caused by reduced yields, leading to increased gross profit per hectare. On the other hand, when higher grape revenue was assumed (3 €/kg), the effect of reduced yield on revenue outweighed the associated reduction in production costs, leading to reduced gross profit per hectare.Conclusions: Lower density, dry-farmed vineyards will experience less water deficit under warmer and drier climate conditions, although this difference is less pronounced in soils with less water holding capacity. When considering differences in yields, revenues, and production costs, lower density vineyards producing lower value grapes (1 €/kg) may also experience an associated increase in gross profit, while such vineyards producing higher value grapes (3 €/kg) might experience a decrease in gross profit.Significance and impact of the study: The implementation of dry-farmed, low density vineyards provides a sustainable solution for grape growing by reducing the need for irrigation water. It allows maintaining vineyards in very dry areas where water is not readily available for irrigation and where other crops (except possibly olive trees) cannot be grown. Modeling of yield, revenue, and production costs shows that this solution is also economically viable, particularly for vineyards producing lower value (€/kg) grapes. Unlike goblet trained bush vine, low density trellised vineyards are perfectly adapted for mechanization.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2019.53.2.2420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2019.53.2.2420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Universite de Bordeaux Authors: Pieri, Philippe; Zott, Katharina; Gomes, Eric; Hilbert, Ghislaine;<p style="text-align: justify;"><strong>Aim</strong>: Polyphenol composition, an important component of grape quality, is strongly influenced by fruit microclimate. However, information relies exclusively on whole berry data and the underlying response functions to microenvironment variables remain essentially unknown. The aim of this study was therefore to analyze the biochemical composition of grapes at both bunch and berry scales, in relation with microclimate.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Whole berries and berry halves were sampled in mature defoliated bunches from two neighboring Bordeaux vineyards with contrasting row orientations (<em>Vitis vinifera</em> cv. Merlot). Flavonoid and amino-acid contents were analyzed by HPLC methods. The main sources of variation were bunch azimuth, berry exposure and, only in South-exposed bunches, berry side. Models were used to estimate radiation at the berry surface and temperature. Intense effects of bunch side and berry side on total flavonol and anthocyanin concentrations were observed. These results were all consistent at both bunch and berry scales. However, the most intense effects were observed at berry scale and mitigated by scaling up from berry to bunch.</p><p style="text-align: justify;"><strong>Conclusion</strong>: Total flavonol concentrations in the berry skin exhibited a clear positive linear relationship with solar radiation. The large heterogeneity of composition at berry scale is consistent with the better known heterogeneity at bunch scale.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Models and original response functions to microclimate could help optimize vineyard management and grape ripening.</p>
Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BY NCFull-Text: https://hal.science/hal-02521723Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2016.50.3.52&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BY NCFull-Text: https://hal.science/hal-02521723Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2016.50.3.52&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2010 FrancePublisher:HAL CCSD Itier, Bernard; Brisson, Nadine; Badeau, Vincent; Bréda, Nathalie; Bosc, Alexandre; Déqué, Michel; Durand, Jean Louis; Guilioni, Lydie; Pagé, Christian; Lardy, Romain; Pieri, Philippe; Roche, Romain; Terray, Laurent;Climate change will produce a decrease in rainfall over French territory, especially in western France. Cropping systems pattern is a key factor in water resources management at catchment basin level. In the frame of the ANR French project ―Climator‖, we have undertaken an analysis of the relationship between rainfall and the annual supply of water to the aquifers under several cropping systems and ecosystems. This was performed through crop modelling using agroclimatic data provided either by measurements at 12 experimental sites in France (1971-2000) or by using regionalised outputs of the French climatological model Arpege (2021-2050 and 2071-2100). The simulations highlight the important differences in aquifers recharge between cropping systems (rainfed vs irrigated but also winter vs spring crops and annual crops vs perennial vegetation). For the 12 sites, they also give an estimate of the decrease with time of the annual recharge under each cropping system (at least 2/3 of rain decrease). In the driest locations, that decrease may lead to a partial change in cropping systems pattern in order to match the total water demand at catchment level. Such change could be devoted either to increase annual recharge when irrigation water is pumped from large aquifers or to reduce summer water demand when irrigation water comes from rivers. Both cases are illustrated.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2010INRIA a CCSD electronic archive serverConference object . 2010Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fbce5870f1dd8fe1eb560281c9d9b0ec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2010INRIA a CCSD electronic archive serverConference object . 2010Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fbce5870f1dd8fe1eb560281c9d9b0ec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Part of book or chapter of book 2019 New Zealand, FrancePublisher:MDPI AG Authors: van Leeuwen, Cornelis; Destrac-Irvine, Agnes; Dubernet, Matthieu; Duchêne, Eric; +6 Authorsvan Leeuwen, Cornelis; Destrac-Irvine, Agnes; Dubernet, Matthieu; Duchêne, Eric; Gowdy, Mark; Marguerit, Elisa; Pieri, Philippe; Parker, Amber; de Resseguier, Laure; Ollat, Nathalie;handle: 10182/11893 , 10182/12931
Climate change will impose increasingly warm and dry conditions on vineyards. Wine quality and yield are strongly influenced by climatic conditions and depend on complex interactions between temperatures, water availability, plant material, and viticultural techniques. In established winegrowing regions, growers have optimized yield and quality by choosing plant material and viticultural techniques according to local climatic conditions, but as the climate changes, these will need to be adjusted. Adaptations to higher temperatures include changing plant material (e.g., rootstocks, cultivars and clones) and modifying viticultural techniques (e.g., changing trunk height, leaf area to fruit weight ratio, timing of pruning) such that harvest dates are maintained in the optimal period at the end of September or early October in the Northern Hemisphere. Vineyards can be made more resilient to drought by planting drought resistant plant material, modifying training systems (e.g., goblet bush vines, or trellised vineyards at wider row spacing), or selecting soils with greater soil water holding capacity. While most vineyards in Europe are currently dry-farmed, irrigation may also be an option to grow sustainable yields under increasingly dry conditions but consideration must be given to associated impacts on water resources and the environment.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02624358/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02624358/documentLincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2019License: CC BYFull-Text: https://doi.org/10.3390/agronomy9090514Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9090514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 297 citations 297 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02624358/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02624358/documentLincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2019License: CC BYFull-Text: https://doi.org/10.3390/agronomy9090514Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9090514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 FrancePublisher:Elsevier BV Authors: Pieri, Philippe;Row crops like vineyards undergo various and significant manipulations of training system and cultural practices, which strongly influence the quality of products. Variations of water vapour fluxes from the soil surface and the leaves in the row volume are closely linked to the ratio of energy available to each compartment. A physically realistic model of available energy partition between the rows and the soil surface is therefore a key factor towards optimization of such systems, and must be included in canopy models. A number of available models were not directly validated. The purpose of the study was therefore to design a model of net radiation partition and check it directly. The model of net radiation partition between rows (Rnv), considered as a whole, and intervening soil surface (Rns) of a row-crop canopy was developed from physically realistic yet simple assumptions: - global solar (short wave) radiation partition was calculated by a previously validated geometric model; - long-wave radiative fluxes between the soil surface, the rows and the atmosphere were calculated from the corresponding view factors, which only depended on canopy geometry; - atmospheric radiation was estimated by a simple empirical relation based on air temperature as the only input variable; - air temperature in the vicinity of leaves replaced leaf surface temperatures as a more convenient input variable, with little loss of information. The input variables were incoming direct and diffuse solar radiation, soil surface mean temperature and air temperature near the leaves. The main parameters were soil and leaf albedos, row porosity and dimensions. A direct validation of the model was attempted by measuring net radiation above the canopy and at five positions above the soil surface in a vineyard of the Bordeaux area. The reliability of soil surface net radiation measurements was estimated by thorough error propagation analysis. When found significant, errors were corrected and finally soil surface net radiation data were corrected only for delay in direct downward solar radiation striking net radiometers, because canopy was discontinuous and height of net radiometers was not negligible compared to canopy height. In these conditions, model calculations were in agreement with measurements, although the model slightly underestimated Rns and therefore overestimated Rnv. As the mean error was about 20 W m−2, and therefore compatible with instrument accuracy, the results were considered satisfactory. This available energy partition model is able to estimate radiative balance in various canopy systems and in various thermal environment conditions, leading to easier simulations of energy balance and water fluxes. It could therefore be a useful tool for optimizing row-crop canopies, taking fully into account any kind of present or future thermal environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2009.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2009.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2014 FrancePublisher:HAL CCSD Authors: Duchêne, Eric; Huard, Frederic; Pieri, Philippe;International audience
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::3739bf3d4568a9358e92ac4c10d8e8a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::3739bf3d4568a9358e92ac4c10d8e8a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:International Viticulture and Enology Society Gowdy, Mark; Suter, Bruno; Pieri, Philippe; Marguerit, Elisa; Destrac Irvine, Agnès; Gambetta, Gregory; van Leeuwen, Cornelis;In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in daily atmospheric conditions and soil water deficits. Grapevines control their transpiration in response to such changes by regulating conductance of water through the soil-plant-atmosphere continuum. The response of bulk stomatal conductance, the vine canopy equivalent of stomatal conductance, to such changes were studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole-vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurements of leaf area, canopy porosity, and predawn leaf water potential. From these data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple linear regression analysis was performed to identify key variables and their relative effect on conductance. For the regression analysis, attention was focused on addressing non-linearity and collinearity in the explanatory variables and developing a model that was readily interpretable. Variability of vapour pressure deficit in the vine canopy over the day and predawn water potential over the season explained much of the variability in bulk stomatal conductance overall, with relative differences between varieties appearing to be driven in large part by differences in conductance response to predawn water potential between the varieties. Transpiration simulations based on the regression equations found similar differences between varieties in terms of daily and seasonal transpiration. These simulations also compared well with those from an accepted vineyard water balance model, although there appeared to be differences between the two approaches in the rate at which conductance, and hence transpiration is reduced as a function of decreasing soil water content (i.e., increasing water deficit stress). By better characterizing the response of bulk stomatal conductance, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://hal.inrae.fr/hal-03745466Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::31183754a8cf9e014b51189edf0bd5fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://hal.inrae.fr/hal-03745466Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::31183754a8cf9e014b51189edf0bd5fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 France, France, GermanyPublisher:Frontiers Media SA Lecourieux, Fatma; Kappel, Christian; Pieri, Philippe; Charon, Justine; Pillet, Jérémy; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Lecourieux, David;Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+ 8°C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, γ-aminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," "protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HT-induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation.
Frontiers in Plant S... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2017License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2017.00053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 107 citations 107 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2017License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2017.00053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Italy, FrancePublisher:Proceedings of the National Academy of Sciences Authors: van Leeuwen, Cornelis; Schultz, Hans R.; Garcia de Cortazar-Atauri, Iñaki; Duchêne, Eric; +9 Authorsvan Leeuwen, Cornelis; Schultz, Hans R.; Garcia de Cortazar-Atauri, Iñaki; Duchêne, Eric; Ollat, Nathalie; Pieri, Philippe; Bois, Benjamin; Goutouly, Jean-Pascal; Quénol, Hervé; Touzard, Jean-Marc; Malheiro, Aureliano C.; Bavaresco, Luigi; Delrot, Serge;Hannah et al. (1) recently published a comprehensive study showing substantial impacts of climate change on viticultural suitability, leading to potential ecological issues. We agree that expansion of viticulture into new areas can lead to a decrease in biodiversity and that an increase in water use for irrigation might lead to major freshwater conservation impacts. However, we disagree with the alarming statement that suitability for winegrowing of main wine-producing areas worldwide will dramatically decrease over the next 40 y. We point out major methodological flaws in ref. 1, mostly linked to (i) the misuse of bibliographical data to compute suitability index, (ii) underestimation of adaptations of viticulture to warmer conditions, and (iii) the inadequacy of the monthly time step in the …
Proceedings of the N... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2013Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1307927110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverProceedings of the National Academy of SciencesArticle . 2013 . Peer-reviewedData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2013Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Nantes: HAL-UNIV-NANTESArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1307927110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Universite de Bordeaux Wu, Jing; Drappier, Virginie; Hilbert, Ghislaine; Guillaumie, Sabine; Dai, Zhanwu; Gény, Laurence; Delrot, Serge; Darriet, Philippe; Thibon, Cécile; Pieri, Philippe;Context and purpose of the study: Like in other wine producing regions around the world, Bordeaux vineyards already experience the effects of climate change. Recent trends as well as model outputs for the future strongly support an increase of average and extreme temperatures. For the maturation period, this increase will by far exceed mean atmospheric temperature increase, as the ripening period will occur earlier in hotter climatic conditions. Therefore, a detrimental secondary metabolism response is expected in grape berries, and of particular concern are the impacts on phenolics and aromas and aroma precursors. The effects of high temperatures on secondary metabolism control have been partly characterized for phenolics, however mostly in artificial growing conditions, while little is known with respect to aromas. A better understanding of how high temperatures influence grape berry secondary metabolites could help vineyard growers to adapt to climate change and maintain wine quality.Material and methods: A two-year field study was carried out in 2015 and 2016 in a vineyard in Bordeaux, France. Two treatments, heated (H) and control (C), were applied to two varieties, Cabernet-Sauvignon and Sauvignon blanc, from fruit-set to maturity. Field heating was achieved by a very local greenhouse effect applied to the bottom of the rows, by enclosing most of the underlying soil surface by polycarbonate shields. As the training system was vertically trellised, the heated volume surrounded most of the bunches but did not disturb most of the leaves in the canopy. This simple and robust setup allowed an increase of berry temperature by about +1.5°C in mean value, up to +5°C at times during clear sky days. This moderate increase of temperature was indicative of the predicted future climatic conditions for the mid-21st century. Berry samples were collected at 4 time points from bunch closure to maturity for each cultivar and treatment. Primary and secondary metabolites were measured in whole berries or skins.Results and conclusions: With this moderate temperature increase, primary metabolite content in berries did not change significantly. In H samples, anthocyanins were reduced and tannins increased before veraison, and both decreased thereafter. H samples also exhibited lower concentrations of some amino acids, especially alanine, serine and phenylalanine. IBMP (2-methoxy-3-isobutylpyrazine) concentrations were also reduced in H samples of Cabernet-Sauvignon, in both seasons, especially at bunch closure stage, but the differences diminished at full maturity. For thiol 3-sulfanyl hexanol precursors, H samples again exhibited much lower concentrations for both varieties, with weak differences at early stages that increased at later stages (up to -70% decline at maturity in 2015 for Sauvignon blanc). These results demonstrate the potential negative impact of elevated temperature on polyphenols and aroma quality of grape berries.Significance and impact of the study: For viticulture to adapt to new climatic conditions, the negative impacts of high temperature on secondary metabolites and aromas, and therefore on wine quality, need to be contemplated. Thus, already established or new vineyard plantings must prepare and consider practices able to mitigate these impacts, for instance practices that increase bunch shading.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2019.53.2.2434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02620595Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2019.53.2.2434&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Universite de Bordeaux van Leeuwen, Cornelis; Pieri, Philippe; Gowdy, Mark; Ollat, Nathalie; Roby, Jean Philippe;Aims: Climate change imposes increasingly warm and dry conditions in most winegrowing regions. Mediterranean vineyards are particularly vulnerable and have registered, in most situations, declining yields over the past years. Although a majority of Mediterranean vineyards are still dry-farmed, yields can be increased by the implementation of irrigation. However, irrigation has an impact on increasingly affected water resources. An alternative solution to irrigation can be the adaptation of training systems. As can be shown by water balance modeling, low density non-irrigated vineyards are much less vulnerable to climatic drought compared to medium or high density vineyards. And while yields tend to be lower in low density vineyards, so are production costs. The aim of this study is to investigate to what extent low density vineyards can be a sustainable and cost effective adaptation for grape growing in dry climates.Methods and results: A water balance model was applied to conceptual vineyards with different soil water holding capacities and different planting densities over recent past (1981-2010) and near future (2041-2070) climatic conditions for two winegrowing scenarios (Cabernet-Sauvignon in Bordeaux and Grenache in Avignon, Côtes du Rhône). Row spacings of 2.0, 3.0 and 4.0 m were investigated for vineyards with 100, 200 and 300 mm total transpirable soil water (TTSW), while inter-vine spacing, vine architecture, and canopy height were kept similar. Projected yields were estimated to vary according to vine density and water deficit based on a meta-analysis of data published in the literature. Production costs were calculated according to an operation-based costing methodology and compared among the different scenarios on a cost per hectare basis. Gross profit per hectare, defined as grape sales revenue minus production costs, was then computed for two grape sale revenue scenarios (1 €/kg and 3 €/kg). The modeled average fraction of transpirable soil water (FTSW) varied across the different winegrowing scenarios, climate periods (recent past or near future), and TTSW and row spacing assumptions. In soils with 200 or 300 mm TTSW, the 30-day average FTSW prior to modeled grape harvest roughly doubled when 4.0 m versus 2.0 m spacing was assumed in both the recent past and near future climate scenarios. In soils with 100 mm TTSW, water deficit was more severe overall and the effect of row spacing on average FTSW was less pronounced. Changes in projected yields were estimated as a function of vine density and FTSW based on relationships published in the literature. Yields decreased with decreasing vine density and increasing water deficits, while production costs decreased with decreasing vine density. When the assumed revenue from grape sales was lower (1 €/kg), the effect of reduced production cost savings outweighed the loss in revenue caused by reduced yields, leading to increased gross profit per hectare. On the other hand, when higher grape revenue was assumed (3 €/kg), the effect of reduced yield on revenue outweighed the associated reduction in production costs, leading to reduced gross profit per hectare.Conclusions: Lower density, dry-farmed vineyards will experience less water deficit under warmer and drier climate conditions, although this difference is less pronounced in soils with less water holding capacity. When considering differences in yields, revenues, and production costs, lower density vineyards producing lower value grapes (1 €/kg) may also experience an associated increase in gross profit, while such vineyards producing higher value grapes (3 €/kg) might experience a decrease in gross profit.Significance and impact of the study: The implementation of dry-farmed, low density vineyards provides a sustainable solution for grape growing by reducing the need for irrigation water. It allows maintaining vineyards in very dry areas where water is not readily available for irrigation and where other crops (except possibly olive trees) cannot be grown. Modeling of yield, revenue, and production costs shows that this solution is also economically viable, particularly for vineyards producing lower value (€/kg) grapes. Unlike goblet trained bush vine, low density trellised vineyards are perfectly adapted for mechanization.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2019.53.2.2420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BY NCFull-Text: https://hal.inrae.fr/hal-02622314Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2019.53.2.2420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Universite de Bordeaux Authors: Pieri, Philippe; Zott, Katharina; Gomes, Eric; Hilbert, Ghislaine;<p style="text-align: justify;"><strong>Aim</strong>: Polyphenol composition, an important component of grape quality, is strongly influenced by fruit microclimate. However, information relies exclusively on whole berry data and the underlying response functions to microenvironment variables remain essentially unknown. The aim of this study was therefore to analyze the biochemical composition of grapes at both bunch and berry scales, in relation with microclimate.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Whole berries and berry halves were sampled in mature defoliated bunches from two neighboring Bordeaux vineyards with contrasting row orientations (<em>Vitis vinifera</em> cv. Merlot). Flavonoid and amino-acid contents were analyzed by HPLC methods. The main sources of variation were bunch azimuth, berry exposure and, only in South-exposed bunches, berry side. Models were used to estimate radiation at the berry surface and temperature. Intense effects of bunch side and berry side on total flavonol and anthocyanin concentrations were observed. These results were all consistent at both bunch and berry scales. However, the most intense effects were observed at berry scale and mitigated by scaling up from berry to bunch.</p><p style="text-align: justify;"><strong>Conclusion</strong>: Total flavonol concentrations in the berry skin exhibited a clear positive linear relationship with solar radiation. The large heterogeneity of composition at berry scale is consistent with the better known heterogeneity at bunch scale.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Models and original response functions to microclimate could help optimize vineyard management and grape ripening.</p>
Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BY NCFull-Text: https://hal.science/hal-02521723Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2016.50.3.52&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BY NCFull-Text: https://hal.science/hal-02521723Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20870/oeno-one.2016.50.3.52&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2010 FrancePublisher:HAL CCSD Itier, Bernard; Brisson, Nadine; Badeau, Vincent; Bréda, Nathalie; Bosc, Alexandre; Déqué, Michel; Durand, Jean Louis; Guilioni, Lydie; Pagé, Christian; Lardy, Romain; Pieri, Philippe; Roche, Romain; Terray, Laurent;Climate change will produce a decrease in rainfall over French territory, especially in western France. Cropping systems pattern is a key factor in water resources management at catchment basin level. In the frame of the ANR French project ―Climator‖, we have undertaken an analysis of the relationship between rainfall and the annual supply of water to the aquifers under several cropping systems and ecosystems. This was performed through crop modelling using agroclimatic data provided either by measurements at 12 experimental sites in France (1971-2000) or by using regionalised outputs of the French climatological model Arpege (2021-2050 and 2071-2100). The simulations highlight the important differences in aquifers recharge between cropping systems (rainfed vs irrigated but also winter vs spring crops and annual crops vs perennial vegetation). For the 12 sites, they also give an estimate of the decrease with time of the annual recharge under each cropping system (at least 2/3 of rain decrease). In the driest locations, that decrease may lead to a partial change in cropping systems pattern in order to match the total water demand at catchment level. Such change could be devoted either to increase annual recharge when irrigation water is pumped from large aquifers or to reduce summer water demand when irrigation water comes from rivers. Both cases are illustrated.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2010INRIA a CCSD electronic archive serverConference object . 2010Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fbce5870f1dd8fe1eb560281c9d9b0ec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationConference object . 2010INRIA a CCSD electronic archive serverConference object . 2010Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::fbce5870f1dd8fe1eb560281c9d9b0ec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Part of book or chapter of book 2019 New Zealand, FrancePublisher:MDPI AG Authors: van Leeuwen, Cornelis; Destrac-Irvine, Agnes; Dubernet, Matthieu; Duchêne, Eric; +6 Authorsvan Leeuwen, Cornelis; Destrac-Irvine, Agnes; Dubernet, Matthieu; Duchêne, Eric; Gowdy, Mark; Marguerit, Elisa; Pieri, Philippe; Parker, Amber; de Resseguier, Laure; Ollat, Nathalie;handle: 10182/11893 , 10182/12931
Climate change will impose increasingly warm and dry conditions on vineyards. Wine quality and yield are strongly influenced by climatic conditions and depend on complex interactions between temperatures, water availability, plant material, and viticultural techniques. In established winegrowing regions, growers have optimized yield and quality by choosing plant material and viticultural techniques according to local climatic conditions, but as the climate changes, these will need to be adjusted. Adaptations to higher temperatures include changing plant material (e.g., rootstocks, cultivars and clones) and modifying viticultural techniques (e.g., changing trunk height, leaf area to fruit weight ratio, timing of pruning) such that harvest dates are maintained in the optimal period at the end of September or early October in the Northern Hemisphere. Vineyards can be made more resilient to drought by planting drought resistant plant material, modifying training systems (e.g., goblet bush vines, or trellised vineyards at wider row spacing), or selecting soils with greater soil water holding capacity. While most vineyards in Europe are currently dry-farmed, irrigation may also be an option to grow sustainable yields under increasingly dry conditions but consideration must be given to associated impacts on water resources and the environment.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02624358/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02624358/documentLincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2019License: CC BYFull-Text: https://doi.org/10.3390/agronomy9090514Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9090514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 297 citations 297 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02624358/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02624358/documentLincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2019License: CC BYFull-Text: https://doi.org/10.3390/agronomy9090514Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9090514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 FrancePublisher:Elsevier BV Authors: Pieri, Philippe;Row crops like vineyards undergo various and significant manipulations of training system and cultural practices, which strongly influence the quality of products. Variations of water vapour fluxes from the soil surface and the leaves in the row volume are closely linked to the ratio of energy available to each compartment. A physically realistic model of available energy partition between the rows and the soil surface is therefore a key factor towards optimization of such systems, and must be included in canopy models. A number of available models were not directly validated. The purpose of the study was therefore to design a model of net radiation partition and check it directly. The model of net radiation partition between rows (Rnv), considered as a whole, and intervening soil surface (Rns) of a row-crop canopy was developed from physically realistic yet simple assumptions: - global solar (short wave) radiation partition was calculated by a previously validated geometric model; - long-wave radiative fluxes between the soil surface, the rows and the atmosphere were calculated from the corresponding view factors, which only depended on canopy geometry; - atmospheric radiation was estimated by a simple empirical relation based on air temperature as the only input variable; - air temperature in the vicinity of leaves replaced leaf surface temperatures as a more convenient input variable, with little loss of information. The input variables were incoming direct and diffuse solar radiation, soil surface mean temperature and air temperature near the leaves. The main parameters were soil and leaf albedos, row porosity and dimensions. A direct validation of the model was attempted by measuring net radiation above the canopy and at five positions above the soil surface in a vineyard of the Bordeaux area. The reliability of soil surface net radiation measurements was estimated by thorough error propagation analysis. When found significant, errors were corrected and finally soil surface net radiation data were corrected only for delay in direct downward solar radiation striking net radiometers, because canopy was discontinuous and height of net radiometers was not negligible compared to canopy height. In these conditions, model calculations were in agreement with measurements, although the model slightly underestimated Rns and therefore overestimated Rnv. As the mean error was about 20 W m−2, and therefore compatible with instrument accuracy, the results were considered satisfactory. This available energy partition model is able to estimate radiative balance in various canopy systems and in various thermal environment conditions, leading to easier simulations of energy balance and water fluxes. It could therefore be a useful tool for optimizing row-crop canopies, taking fully into account any kind of present or future thermal environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2009.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolmodel.2009.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2014 FrancePublisher:HAL CCSD Authors: Duchêne, Eric; Huard, Frederic; Pieri, Philippe;International audience
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::3739bf3d4568a9358e92ac4c10d8e8a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::3739bf3d4568a9358e92ac4c10d8e8a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:International Viticulture and Enology Society Gowdy, Mark; Suter, Bruno; Pieri, Philippe; Marguerit, Elisa; Destrac Irvine, Agnès; Gambetta, Gregory; van Leeuwen, Cornelis;In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in daily atmospheric conditions and soil water deficits. Grapevines control their transpiration in response to such changes by regulating conductance of water through the soil-plant-atmosphere continuum. The response of bulk stomatal conductance, the vine canopy equivalent of stomatal conductance, to such changes were studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole-vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurements of leaf area, canopy porosity, and predawn leaf water potential. From these data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple linear regression analysis was performed to identify key variables and their relative effect on conductance. For the regression analysis, attention was focused on addressing non-linearity and collinearity in the explanatory variables and developing a model that was readily interpretable. Variability of vapour pressure deficit in the vine canopy over the day and predawn water potential over the season explained much of the variability in bulk stomatal conductance overall, with relative differences between varieties appearing to be driven in large part by differences in conductance response to predawn water potential between the varieties. Transpiration simulations based on the regression equations found similar differences between varieties in terms of daily and seasonal transpiration. These simulations also compared well with those from an accepted vineyard water balance model, although there appeared to be differences between the two approaches in the rate at which conductance, and hence transpiration is reduced as a function of decreasing soil water content (i.e., increasing water deficit stress). By better characterizing the response of bulk stomatal conductance, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.
Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://hal.inrae.fr/hal-03745466Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::31183754a8cf9e014b51189edf0bd5fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Institut National de... arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Full-Text: https://hal.inrae.fr/hal-03745466Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::31183754a8cf9e014b51189edf0bd5fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu