- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Ali J. Chamkha; Sina Sazegar; Esmael Jamesahar; Mohammad Ghalambaz;doi: 10.3390/en12030541
The free convection heat transfer of hybrid nanofluids in a cavity space composed of a clear flow, porous medium and a solid part is addressed. The cavity is heated from the bottom and cooled from the top. The side walls are well insulated. The upper part of the cavity is a clear space with no porous or solid materials and is filled with hybrid nanofluid. The bottom part is divided into two parts of a porous space saturated with the hybrid nanofluid and a solid thermal conductive block. There are conjugate heat transfer mechanisms between the solid block and the porous medium filled with the hybrid nanofluid as well as the hybrid nanofluid in the clear space. For the porous medium model, the local thermal non-equilibrium effects are considered. The hybrid nanofluids contain copper (20 nm) and alumina nanoparticles (40 nm) hybrid nanoparticles. The governing equations for the flow and heat transfer of the hybrid nanofluid in the clear space and the porous medium are introduced. Considering the conjugate heat transfer between the solid block and the hybrid nanofluid fluid in the pores and the porous matrix, appropriate boundary conditions for heat channeling are utilized. The governing equations are transformed into non-dimensional form to generalize the model. The finite element method is employed to solve the equations. The grid check and validation procedure are performed. Subsequently streamlines, isotherms, and Nusselt number are studied as important aspects of flow and heat transfer in the cavity. The increase in the portion of the clear flow part in the cavity enhances heat transfer due to better hybrid nanofluid circulation.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/541/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/541/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mohammad Ghalambaz; Ahmad Hajjar; S.A.M. Mehryan; Mohammad Hosein Heidarshenas;Non-Newtonian behavior of a Phase Change Material (PCM) inside a porous coaxial pipe is studied by utilizing the deformed mesh technique. The inner and outer pipes are subjected to the high and low temperatures of Th and Tc, while the bottom and upper surfaces are thermally insulated. The Finite Element Method (FEM), implemented in the Arbitrary Eulerian-Lagrangian (ALE) moving grid technique, is applied to solve the weakened forms of the governing equations. Stefan's condition is employed to track the solid-liquid interface of the PCM during the melting process. Grid independency test is conducted, and the verifications of the results are evaluated through comparisons with several test cases published in the literature. The simulations show that an increment of Stefan's number can significantly improve the melting rate. As the Stefan number reaches from 0.014 to 0.01, the full melting non-dimensional time declines from 1.313 to 0.937. Also, an extreme increase in the melting rate can be found while decreasing the power-law index. When the power-law index decrease from 1 to 0.6, the full melting time subsequently is reduced to 54%. Keywords: Phase Change Material (PCM), Non-Newtonian PCM, Porous medium, Arbitrary Eulerian-Lagrangian (ALE), Stefan condition
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2019.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2019.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG S. A. M. Mehryan; Kaamran Raahemifar; Leila Sasani Gargari; Ahmad Hajjar; Mohamad El Kadri; Obai Younis; Mohammad Ghalambaz;doi: 10.3390/su13052590
A Nano-Encapsulated Phase-Change Material (NEPCM) suspension is made of nanoparticles containing a Phase Change Material in their core and dispersed in a fluid. These particles can contribute to thermal energy storage and heat transfer by their latent heat of phase change as moving with the host fluid. Thus, such novel nanoliquids are promising for applications in waste heat recovery and thermal energy storage systems. In the present research, the mixed convection of NEPCM suspensions was addressed in a wavy wall cavity containing a rotating solid cylinder. As the nanoparticles move with the liquid, they undergo a phase change and transfer the latent heat. The phase change of nanoparticles was considered as temperature-dependent heat capacity. The governing equations of mass, momentum, and energy conservation were presented as partial differential equations. Then, the governing equations were converted to a non-dimensional form to generalize the solution, and solved by the finite element method. The influence of control parameters such as volume concentration of nanoparticles, fusion temperature of nanoparticles, Stefan number, wall undulations number, and as well as the cylinder size, angular rotation, and thermal conductivities was addressed on the heat transfer in the enclosure. The wall undulation number induces a remarkable change in the Nusselt number. There are optimum fusion temperatures for nanoparticles, which could maximize the heat transfer rate. The increase of the latent heat of nanoparticles (a decline of Stefan number) boosts the heat transfer advantage of employing the phase change particles.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/5/2590/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/5/2590/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mohammad Ghalambaz; Mohsen Izadi; S.A.M. Mehryan; Ali J. Chamkha;Abstract This paper investigates the natural convection of Ag-MgO/water nanofluids within a porous enclosure using a Local Thermal Non-Equilibrium (LTNE) model. The Darcy model is applied to simulate the flow dynamics throughout the porous medium. Using non-dimensional parameters, the dimensionless form of the prevailing equations has been derived. Finally, the Galerkin finite element method is utilized to solve governing equations using a non-uniform structured grid, numerically. The key parameters of this study are Rayleigh number (10 ≤ Ra ≤ 1000), porosity (0.1 ≤ e ≤ 0.9), nanoparticles volume fraction (0 ≤ φ ≤ 0.02), interface convective heat transfer coefficient (1 ≤ H ≤ 1000), and the thermal conductivity ratio of two porous phases (1 ≤ γ ≤ 10). It is indicated that dispersing Ag–MgO hybrid nanoparticles in the water strongly decreases the transport of heat through two phases of the porous enclosure. For glass ball and aluminum foam, by increasing the H from 1 to 1000, Qhnf would be 1.33 and 5.85 times, respectively, at φ = 2%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu178 citations 178 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Mehdi Ghalambaz; Mutabe Aljaghtham; Ali J. Chamkha; Abdelkader Abdullah; Abdullah Alshehri; Mohammad Ghalambaz;International Journa... arrow_drop_down International Journal of Mechanical SciencesArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2022.107830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Mechanical SciencesArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2022.107830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Russian FederationPublisher:Elsevier BV Mohammad Ghalambaz; Omid Mahian; Omid Mahian; Iman Zahmatkesh; Josua P. Meyer; Mikhail A. Sheremet; Saeed Zeinali Heris; Liu Yang; Dengwei Jing; Mohsen Sharifpur; Somchai Wongwises; Somchai Wongwises;Abstract Due to their superior thermophysical properties, there is a growing body of work on nanofluids in the field of thermal systems. However, there is no specific review of the role of the nanoparticle shape, which has been found crucial to their performance adjustment. A comprehensive literature review of the effect of nanoparticle shape on the hydrothermal performance of thermal systems utilizing nanofluids was compiled. The review covered the forced, mixed, and natural convection regimes and included heat exchangers, boundary layer flows, channel flows, peristaltic flows, impinging jets, cavity flows, and flows of hybrid nanofluids. It indicated that the control of nanoparticle shape is a promising technique for the optimization of heat exchange and the required pumping power. However, no uniform conclusion was reached for the role of nanoparticle shape on the hydrothermal performance of thermal systems. In most of the previous studies in the natural and forced convection regimes, the platelet–like nanoparticle acquired the highest heat transfer rate. However, most of the works in the mixed convection regime reported the best heat transfer performance for the blade–like nanoparticle. More research studies are required in future to determine the role of nanoparticle shape for thermal management of energy systems.
Digital library (rep... arrow_drop_down Digital library (repository) of Tomsk State UniversityArticle . 2021Data sources: Digital library (repository) of Tomsk State UniversityJournal of Molecular LiquidsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molliq.2020.114430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 108 citations 108 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital library (rep... arrow_drop_down Digital library (repository) of Tomsk State UniversityArticle . 2021Data sources: Digital library (repository) of Tomsk State UniversityJournal of Molecular LiquidsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molliq.2020.114430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Informa UK Limited Kasra Ayoubi Ayoubloo; Shima Yazdani; Mikhail Sheremet; Obai Younis; Mohammad Ghalambaz;This study aims to improve heat transfer by utilizing Kelvin forces and inducing magnetic-induced convection in ferro-hydrodynamic convection, in conjunction with nanoparticle migrations. The fundamental equations governing the conservation of mass, momentum, energy, and nanoparticle mass were formulated as partial differential equations. As primary terms, the model incorporated the buoyancy, Lorenz, and Kelvin forces. In this context, temperature variations in the presence of a variable magnetic field generate a temperature-dependent body force. This can induce fluid circulation. Thus, even without gravitational force, magnetic force can stimulate convection heat transfer flows. The study thoroughly examined the impact of magnetic source placement on heat transfer. An increase in Ha from 0 to 100 reduced the average Nusselt number (NuAvg) by approximately 60% in all cases, regardless of the magnetic source position. However, the magnetic field number (Mnf) and its effect on NuAvg are dependent on the magnetic source's position.
Journal of Taibah Un... arrow_drop_down Journal of Taibah University for ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16583655.2023.2215675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Taibah Un... arrow_drop_down Journal of Taibah University for ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16583655.2023.2215675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Authors: Mohammad Ghalambaz; Seyed Abdollah Mansouri Mehryan; Reza Kalantar Feeoj; Ahmad Hajjar; +3 AuthorsMohammad Ghalambaz; Seyed Abdollah Mansouri Mehryan; Reza Kalantar Feeoj; Ahmad Hajjar; Obai Younis; Pouyan Talebizadehsardari; Wahiba Yaïci;doi: 10.3390/su13052871
The melting heat transfer of nano-enhanced phase change materials was addressed in a thermal energy storage unit. A heated U-shape tube was placed in a cylindrical shell. The cross-section of the tube is a petal-shape, which can have different amplitudes and wave numbers. The shell is filled with capric acid with a fusion temperature of 32 °C. The copper (Cu)/graphene oxide (GO) type nanoparticles were added to capric acid to improve its heat transfer properties. The enthalpy-porosity approach was used to model the phase change heat transfer in the presence of natural convection heat transfer effects. A novel mesh adaptation method was used to track the phase change melting front and produce high-quality mesh at the phase change region. The impacts of the volume fraction of nanoparticles, the amplitude and number of petals, the distance between tubes, and the angle of tube placements were investigated on the thermal energy rate and melting-time in the thermal energy storage unit. An average charging power can be raised by up to 45% by using petal shape tubes compared to a plain tube. The nanoadditives could improve the heat transfer by 7% for Cu and 11% for GO nanoparticles compared to the pure phase change material.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/5/2871/pdfData sources: Multidisciplinary Digital Publishing InstituteBrunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/25171Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/5/2871/pdfData sources: Multidisciplinary Digital Publishing InstituteBrunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/25171Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mohammad Ghalambaz; Jun Zhang;Abstract The conjugate flow and heat transfer of phase change materials (PCMs)-metal foam confined between two annuli is addressed. A pulse heat load is employed at the inner surface of annuli, while the outer surface is subject to convection cooling. (This content of this sentence is the same as that in other sentences.) The enthalpy-porosity approach is utilized to model the phase change, and the natural convection in the porous medium is taken into account using Darcy-Brinkman model. The governing equations are transformed into non-dimensional form and solved by the finite element method. The finite element method is employed to solve the governing equations in the non-dimensional form. An automatic grid adaptation technique is employed to capture the phase change interface. The results are compared with theoretical and experimental studies available in the literature and found in good agreement. The steady-state solution and transient characteristics are addressed. The results demonstrate that the heatsink filled with PCM-metal foam can enhance the heat transfer at the hot surface, particularly at low external cooling power (Biot number
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2019.118832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu151 citations 151 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2019.118832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV S.A.M. Mehryan; Mikhail A. Sheremet; Mohammad Ghalambaz; Ahmad Hajjar; Leila Sasani Gargari;Abstract The free convective flow of a Nano-Encapsulated Phase Change Material (NEPCM) suspension in an eccentric annulus is investigated numerically. The inner cylinder is heated and kept at a temperature higher than that of the outer cylinder. The core of the NEPCM particles is made of nonadecane while the shell is made of Polyurethane. The nanoparticles are dispersed in water as the base fluid. The equations governing the flow and heat transfer of the NEPCM suspension in the annulus are developed and written in the non-dimensional form. The numerical solutions of these equations are obtained using the finite element method. The validity of the numerical method is ensured by comparing its predictions to the results of previously published studies. The main outcomes point out to the impact of the volume fraction of the NEPCM particles and Stefan number on the thermal and hydrodynamic characteristics of the suspension. A 5% volume fraction represents the optimal value for heat transfer enhancement. Heat transfer is also enhanced when the fusion temperature of the NEPCM core is far from the temperatures of the hot and cold walls. Furthermore, increasing the annulus eccentricity and moving the inner cylinder towards the top tends to inhibit heat transfer in the annulus.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu154 citations 154 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Ali J. Chamkha; Sina Sazegar; Esmael Jamesahar; Mohammad Ghalambaz;doi: 10.3390/en12030541
The free convection heat transfer of hybrid nanofluids in a cavity space composed of a clear flow, porous medium and a solid part is addressed. The cavity is heated from the bottom and cooled from the top. The side walls are well insulated. The upper part of the cavity is a clear space with no porous or solid materials and is filled with hybrid nanofluid. The bottom part is divided into two parts of a porous space saturated with the hybrid nanofluid and a solid thermal conductive block. There are conjugate heat transfer mechanisms between the solid block and the porous medium filled with the hybrid nanofluid as well as the hybrid nanofluid in the clear space. For the porous medium model, the local thermal non-equilibrium effects are considered. The hybrid nanofluids contain copper (20 nm) and alumina nanoparticles (40 nm) hybrid nanoparticles. The governing equations for the flow and heat transfer of the hybrid nanofluid in the clear space and the porous medium are introduced. Considering the conjugate heat transfer between the solid block and the hybrid nanofluid fluid in the pores and the porous matrix, appropriate boundary conditions for heat channeling are utilized. The governing equations are transformed into non-dimensional form to generalize the model. The finite element method is employed to solve the equations. The grid check and validation procedure are performed. Subsequently streamlines, isotherms, and Nusselt number are studied as important aspects of flow and heat transfer in the cavity. The increase in the portion of the clear flow part in the cavity enhances heat transfer due to better hybrid nanofluid circulation.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/541/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/541/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mohammad Ghalambaz; Ahmad Hajjar; S.A.M. Mehryan; Mohammad Hosein Heidarshenas;Non-Newtonian behavior of a Phase Change Material (PCM) inside a porous coaxial pipe is studied by utilizing the deformed mesh technique. The inner and outer pipes are subjected to the high and low temperatures of Th and Tc, while the bottom and upper surfaces are thermally insulated. The Finite Element Method (FEM), implemented in the Arbitrary Eulerian-Lagrangian (ALE) moving grid technique, is applied to solve the weakened forms of the governing equations. Stefan's condition is employed to track the solid-liquid interface of the PCM during the melting process. Grid independency test is conducted, and the verifications of the results are evaluated through comparisons with several test cases published in the literature. The simulations show that an increment of Stefan's number can significantly improve the melting rate. As the Stefan number reaches from 0.014 to 0.01, the full melting non-dimensional time declines from 1.313 to 0.937. Also, an extreme increase in the melting rate can be found while decreasing the power-law index. When the power-law index decrease from 1 to 0.6, the full melting time subsequently is reduced to 54%. Keywords: Phase Change Material (PCM), Non-Newtonian PCM, Porous medium, Arbitrary Eulerian-Lagrangian (ALE), Stefan condition
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2019.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2019.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG S. A. M. Mehryan; Kaamran Raahemifar; Leila Sasani Gargari; Ahmad Hajjar; Mohamad El Kadri; Obai Younis; Mohammad Ghalambaz;doi: 10.3390/su13052590
A Nano-Encapsulated Phase-Change Material (NEPCM) suspension is made of nanoparticles containing a Phase Change Material in their core and dispersed in a fluid. These particles can contribute to thermal energy storage and heat transfer by their latent heat of phase change as moving with the host fluid. Thus, such novel nanoliquids are promising for applications in waste heat recovery and thermal energy storage systems. In the present research, the mixed convection of NEPCM suspensions was addressed in a wavy wall cavity containing a rotating solid cylinder. As the nanoparticles move with the liquid, they undergo a phase change and transfer the latent heat. The phase change of nanoparticles was considered as temperature-dependent heat capacity. The governing equations of mass, momentum, and energy conservation were presented as partial differential equations. Then, the governing equations were converted to a non-dimensional form to generalize the solution, and solved by the finite element method. The influence of control parameters such as volume concentration of nanoparticles, fusion temperature of nanoparticles, Stefan number, wall undulations number, and as well as the cylinder size, angular rotation, and thermal conductivities was addressed on the heat transfer in the enclosure. The wall undulation number induces a remarkable change in the Nusselt number. There are optimum fusion temperatures for nanoparticles, which could maximize the heat transfer rate. The increase of the latent heat of nanoparticles (a decline of Stefan number) boosts the heat transfer advantage of employing the phase change particles.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/5/2590/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/5/2590/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mohammad Ghalambaz; Mohsen Izadi; S.A.M. Mehryan; Ali J. Chamkha;Abstract This paper investigates the natural convection of Ag-MgO/water nanofluids within a porous enclosure using a Local Thermal Non-Equilibrium (LTNE) model. The Darcy model is applied to simulate the flow dynamics throughout the porous medium. Using non-dimensional parameters, the dimensionless form of the prevailing equations has been derived. Finally, the Galerkin finite element method is utilized to solve governing equations using a non-uniform structured grid, numerically. The key parameters of this study are Rayleigh number (10 ≤ Ra ≤ 1000), porosity (0.1 ≤ e ≤ 0.9), nanoparticles volume fraction (0 ≤ φ ≤ 0.02), interface convective heat transfer coefficient (1 ≤ H ≤ 1000), and the thermal conductivity ratio of two porous phases (1 ≤ γ ≤ 10). It is indicated that dispersing Ag–MgO hybrid nanoparticles in the water strongly decreases the transport of heat through two phases of the porous enclosure. For glass ball and aluminum foam, by increasing the H from 1 to 1000, Qhnf would be 1.33 and 5.85 times, respectively, at φ = 2%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu178 citations 178 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.04.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Mehdi Ghalambaz; Mutabe Aljaghtham; Ali J. Chamkha; Abdelkader Abdullah; Abdullah Alshehri; Mohammad Ghalambaz;International Journa... arrow_drop_down International Journal of Mechanical SciencesArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2022.107830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Mechanical SciencesArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2022.107830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Russian FederationPublisher:Elsevier BV Mohammad Ghalambaz; Omid Mahian; Omid Mahian; Iman Zahmatkesh; Josua P. Meyer; Mikhail A. Sheremet; Saeed Zeinali Heris; Liu Yang; Dengwei Jing; Mohsen Sharifpur; Somchai Wongwises; Somchai Wongwises;Abstract Due to their superior thermophysical properties, there is a growing body of work on nanofluids in the field of thermal systems. However, there is no specific review of the role of the nanoparticle shape, which has been found crucial to their performance adjustment. A comprehensive literature review of the effect of nanoparticle shape on the hydrothermal performance of thermal systems utilizing nanofluids was compiled. The review covered the forced, mixed, and natural convection regimes and included heat exchangers, boundary layer flows, channel flows, peristaltic flows, impinging jets, cavity flows, and flows of hybrid nanofluids. It indicated that the control of nanoparticle shape is a promising technique for the optimization of heat exchange and the required pumping power. However, no uniform conclusion was reached for the role of nanoparticle shape on the hydrothermal performance of thermal systems. In most of the previous studies in the natural and forced convection regimes, the platelet–like nanoparticle acquired the highest heat transfer rate. However, most of the works in the mixed convection regime reported the best heat transfer performance for the blade–like nanoparticle. More research studies are required in future to determine the role of nanoparticle shape for thermal management of energy systems.
Digital library (rep... arrow_drop_down Digital library (repository) of Tomsk State UniversityArticle . 2021Data sources: Digital library (repository) of Tomsk State UniversityJournal of Molecular LiquidsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molliq.2020.114430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 108 citations 108 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital library (rep... arrow_drop_down Digital library (repository) of Tomsk State UniversityArticle . 2021Data sources: Digital library (repository) of Tomsk State UniversityJournal of Molecular LiquidsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molliq.2020.114430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Informa UK Limited Kasra Ayoubi Ayoubloo; Shima Yazdani; Mikhail Sheremet; Obai Younis; Mohammad Ghalambaz;This study aims to improve heat transfer by utilizing Kelvin forces and inducing magnetic-induced convection in ferro-hydrodynamic convection, in conjunction with nanoparticle migrations. The fundamental equations governing the conservation of mass, momentum, energy, and nanoparticle mass were formulated as partial differential equations. As primary terms, the model incorporated the buoyancy, Lorenz, and Kelvin forces. In this context, temperature variations in the presence of a variable magnetic field generate a temperature-dependent body force. This can induce fluid circulation. Thus, even without gravitational force, magnetic force can stimulate convection heat transfer flows. The study thoroughly examined the impact of magnetic source placement on heat transfer. An increase in Ha from 0 to 100 reduced the average Nusselt number (NuAvg) by approximately 60% in all cases, regardless of the magnetic source position. However, the magnetic field number (Mnf) and its effect on NuAvg are dependent on the magnetic source's position.
Journal of Taibah Un... arrow_drop_down Journal of Taibah University for ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16583655.2023.2215675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Taibah Un... arrow_drop_down Journal of Taibah University for ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/16583655.2023.2215675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Authors: Mohammad Ghalambaz; Seyed Abdollah Mansouri Mehryan; Reza Kalantar Feeoj; Ahmad Hajjar; +3 AuthorsMohammad Ghalambaz; Seyed Abdollah Mansouri Mehryan; Reza Kalantar Feeoj; Ahmad Hajjar; Obai Younis; Pouyan Talebizadehsardari; Wahiba Yaïci;doi: 10.3390/su13052871
The melting heat transfer of nano-enhanced phase change materials was addressed in a thermal energy storage unit. A heated U-shape tube was placed in a cylindrical shell. The cross-section of the tube is a petal-shape, which can have different amplitudes and wave numbers. The shell is filled with capric acid with a fusion temperature of 32 °C. The copper (Cu)/graphene oxide (GO) type nanoparticles were added to capric acid to improve its heat transfer properties. The enthalpy-porosity approach was used to model the phase change heat transfer in the presence of natural convection heat transfer effects. A novel mesh adaptation method was used to track the phase change melting front and produce high-quality mesh at the phase change region. The impacts of the volume fraction of nanoparticles, the amplitude and number of petals, the distance between tubes, and the angle of tube placements were investigated on the thermal energy rate and melting-time in the thermal energy storage unit. An average charging power can be raised by up to 45% by using petal shape tubes compared to a plain tube. The nanoadditives could improve the heat transfer by 7% for Cu and 11% for GO nanoparticles compared to the pure phase change material.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/5/2871/pdfData sources: Multidisciplinary Digital Publishing InstituteBrunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/25171Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/5/2871/pdfData sources: Multidisciplinary Digital Publishing InstituteBrunel University London: Brunel University Research Archive (BURA)Article . 2021License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/25171Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2021License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052871&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mohammad Ghalambaz; Jun Zhang;Abstract The conjugate flow and heat transfer of phase change materials (PCMs)-metal foam confined between two annuli is addressed. A pulse heat load is employed at the inner surface of annuli, while the outer surface is subject to convection cooling. (This content of this sentence is the same as that in other sentences.) The enthalpy-porosity approach is utilized to model the phase change, and the natural convection in the porous medium is taken into account using Darcy-Brinkman model. The governing equations are transformed into non-dimensional form and solved by the finite element method. The finite element method is employed to solve the governing equations in the non-dimensional form. An automatic grid adaptation technique is employed to capture the phase change interface. The results are compared with theoretical and experimental studies available in the literature and found in good agreement. The steady-state solution and transient characteristics are addressed. The results demonstrate that the heatsink filled with PCM-metal foam can enhance the heat transfer at the hot surface, particularly at low external cooling power (Biot number
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2019.118832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu151 citations 151 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2019.118832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV S.A.M. Mehryan; Mikhail A. Sheremet; Mohammad Ghalambaz; Ahmad Hajjar; Leila Sasani Gargari;Abstract The free convective flow of a Nano-Encapsulated Phase Change Material (NEPCM) suspension in an eccentric annulus is investigated numerically. The inner cylinder is heated and kept at a temperature higher than that of the outer cylinder. The core of the NEPCM particles is made of nonadecane while the shell is made of Polyurethane. The nanoparticles are dispersed in water as the base fluid. The equations governing the flow and heat transfer of the NEPCM suspension in the annulus are developed and written in the non-dimensional form. The numerical solutions of these equations are obtained using the finite element method. The validity of the numerical method is ensured by comparing its predictions to the results of previously published studies. The main outcomes point out to the impact of the volume fraction of the NEPCM particles and Stefan number on the thermal and hydrodynamic characteristics of the suspension. A 5% volume fraction represents the optimal value for heat transfer enhancement. Heat transfer is also enhanced when the fusion temperature of the NEPCM core is far from the temperatures of the hot and cold walls. Furthermore, increasing the annulus eccentricity and moving the inner cylinder towards the top tends to inhibit heat transfer in the annulus.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu154 citations 154 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2020.101236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu