- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Review 2023Embargo end date: 14 Apr 2023 Spain, Spain, Denmark, Germany, Germany, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | E-MAGICEC| E-MAGICBlázquez, J. Alberto; Maça, Rudi R.; Leonet, Olatz; Azaceta, Eneko; Mukherjee, Ayan; Zhao-Karger, Zhirong; Li, Zhenyou; Kovalevsky, Aleksey; Fernández-Barquín, Ana; Mainar, Aroa R.; Jankowski, Piotr; Rademacher, Laurin; Dey, Sunita; Dutton, Siân E.; Grey, Clare P.; Drews, J.; Drews, Janina; Häcker, Joachim; Danner, Timo; Latz, Arnulf; Sotta, Dane; Palacin, M. R.; Palacin, M. Rosa; Martin, Jean-Frédéric; Lastra, Juan Maria García; Fichtner, Maximilian; Kundu, Sumana; Kraytsberg, Alexander; Ein-Eli, Yair; Noked, Malachi; Aurbach, Doron;handle: 10261/334529
Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century.
Energy & Environment... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAReview . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAReview . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Report 2021Embargo end date: 02 Jul 2021 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Development and commercia..., UKRI | The Materials and Molecul..., UKRI | Tier 2 Hub in Materials a... +2 projectsUKRI| Development and commercialisation of a flexible manufacturing process to produce monolithic metal-organic framework (MOF) materials. ,UKRI| The Materials and Molecular Modelling Hub ,UKRI| Tier 2 Hub in Materials and Molecular Modelling ,UKRI| Understanding and Improving Electrochemical Carbon Dioxide Capture ,EC| NanoMOFdeliAlexander C. Forse; Siân E. Dutton; Aron Walsh; Sylvia Britto; David Fairen-Jimenez; Yuan Chen; Yuan Chen; Chloe J. Balhatchet; Cheng Liu; David G. Madden; Matthias J. Golomb; Jamie W. Gittins;pmid: 34354834
pmc: PMC8315177
Two-dimensional electrically conductive metal-organic frameworks (MOFs) have emerged as promising model electrodes for use in electric double-layer capacitors (EDLCs). However, a number of fundamental questions about the behaviour of this class of materials in EDLCs remain unanswered, including the effect of the identity of the metal node and organic linker molecule on capacitive performance and the limitations of current conductive MOFs in these devices relative to traditional activated carbon electrode materials. Herein, we address both these questions via a detailed study of the capacitive performance of the framework Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with an acetonitrile-based electrolyte, finding a specific capacitance of 110 – 114 F g−1 at current densities of 0.04 – 0.05 A g−1 and a modest rate capability. By, directly comparing its performance with the previously reported analogue, Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), we illustrate that capacitive performance is largely independent of the identity of the metal node and organic linker molecule in these nearly isostructural MOFs. Importantly, this result suggests that EDLC performance in general is uniquely defined by the 3D structure of the electrodes and the electrolyte, a significant finding not demonstrated using traditional electrode materials. Finally, we probe the limitations of Cu3(HHTP)2 in EDLCs, finding a limited cell voltage window of 1.3 V and only a modest capacitance retention of 81 % over 30,000 cycles, both significantly lower than state-of-the-art porous carbons. These important insights will aid the design of future conductive MOFs with greater EDLC performances.
Smithsonian figshare arrow_drop_down Smithsonian figshareReport . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.26434/chemr...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Materials Chemistry AArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv.14345681.v3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareReport . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.26434/chemr...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Materials Chemistry AArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv.14345681.v3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 11 Jul 2023 United Kingdom, FrancePublisher:American Physical Society (APS) Funded by:UKRI | Theoretical Condensed Mat..., ANR | Matadire, UKRI | Cambridge Theory of Conde...UKRI| Theoretical Condensed Matter Cambridge - Critical Mass Grant ,ANR| Matadire ,UKRI| Cambridge Theory of Condensed Matter Group -Critical Mass GrantKoskelo, Eliseanne; Mukherjee, Paromita; Liu, Cheng; Sackville Hamilton, Alice; Ong, Harapan; Castelnovo, Claudio; Zhitomirsky, M.E.; Dutton, Siân;As materials with suppressed ordering temperatures and enhanced ground state entropies, frustrated magnetic oxides are ideal candidates for cryogenic magnetocaloric refrigeration. While previous materials design has focused on tuning the magnetic moments, their interactions, and density of moments on the lattice, there has been relatively little attention to frustrated lattices. Prior theoretical work has shown that the magnetocaloric cooling rate at the saturation field is proportional to a macroscopic number of soft mode excitations that arise due to the classical ground state degeneracy. The number of these modes is directly determined by the geometry of the frustrating lattice. For corner-sharing geometries, the pyrochlore has 50\% more modes than the garnet and kagome lattices, whereas the edge-sharing \emph{fcc} has only a subextensive number of soft modes. Here, we study the role of soft modes in the magnetocaloric effect of four large-spin Gd$^{3+}$ ($L=0$, $J=S=7/2$) Heisenberg antiferromagnets on a kagome, garnet, pyrochlore, and \emph{fcc} lattice. By comparing measurements of the magnetic entropy change $ΔS_m$ of these materials at fields up to $9$~T with predictions using mean-field theory and Monte Carlo simulations, we are able to understand the relative importance of spin correlations and quantization effects. We observe that tuning the value of the nearest neighbor coupling has a more dominant contribution to the magnetocaloric entropy change in the liquid-He cooling regime ($2$-$20$~K), rather than tuning the number of soft mode excitations. Our results inform future materials design in terms of dimensionality, degree of magnetic frustration, and lattice geometry. 15 pages, 14 figures
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 17 Jun 2021 United KingdomPublisher:Apollo - University of Cambridge Repository Van De Goor, Tim; Liu, Yun; Feldmann, Sascha; Bourelle, Sean; Neumann, Timo; Winkler, Thomas; Kelly, Nicola; Liu, Cheng; Jones, Michael; Emge, Steffen; Friend, Richard; Monserrat, Bartomeu; Deschler, Felix; Dutton, Sian;doi: 10.17863/cam.71386
Research data supporting the publication. Data was collected using X-ray diffraction, heat capacity measurements, density functional theory calculations and photoluminescence spectroscopy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.71386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.71386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Preprint , Journal 2018Embargo end date: 01 Jan 2018 United KingdomPublisher:Royal Society of Chemistry (RSC) Jeongjae Lee; Bartomeu Monserrat; Ieuan D. Seymour; Zigeng Liu; Siân E. Dutton; Clare P. Grey;handle: 2164/22995
We show that vacancy creation and relativistic spin–orbit coupling play a crucial role in promoting fast Mg-ion conduction of Mg3Bi2.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ta11181a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ta11181a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:The Electrochemical Society Authors: Amigues, AM; Glass, Hugh; Dutton, Sian;doi: 10.1149/2.0231603jes
We thank the Winton Programme for the Physics of Sustainability for funding the project. Thanks are also due to Clare Grey and Giulio Lampronti, for providing technical support and useful discussion. We would finally like to extend our gratitude for the Xpress Access ISIS neutron beamtime on GEM provided by the UK Science and Technology Facilities Council (STFC).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0231603jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0231603jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Review 2023Embargo end date: 14 Apr 2023 Spain, Spain, Denmark, Germany, Germany, United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:EC | E-MAGICEC| E-MAGICBlázquez, J. Alberto; Maça, Rudi R.; Leonet, Olatz; Azaceta, Eneko; Mukherjee, Ayan; Zhao-Karger, Zhirong; Li, Zhenyou; Kovalevsky, Aleksey; Fernández-Barquín, Ana; Mainar, Aroa R.; Jankowski, Piotr; Rademacher, Laurin; Dey, Sunita; Dutton, Siân E.; Grey, Clare P.; Drews, J.; Drews, Janina; Häcker, Joachim; Danner, Timo; Latz, Arnulf; Sotta, Dane; Palacin, M. R.; Palacin, M. Rosa; Martin, Jean-Frédéric; Lastra, Juan Maria García; Fichtner, Maximilian; Kundu, Sumana; Kraytsberg, Alexander; Ein-Eli, Yair; Noked, Malachi; Aurbach, Doron;handle: 10261/334529
Emerging energy storage systems based on abundant and cost-effective materials are key to overcome the global energy and climate crisis of the 21st century.
Energy & Environment... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAReview . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: CC BY NCData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAReview . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d2ee04121a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Report 2021Embargo end date: 02 Jul 2021 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Development and commercia..., UKRI | The Materials and Molecul..., UKRI | Tier 2 Hub in Materials a... +2 projectsUKRI| Development and commercialisation of a flexible manufacturing process to produce monolithic metal-organic framework (MOF) materials. ,UKRI| The Materials and Molecular Modelling Hub ,UKRI| Tier 2 Hub in Materials and Molecular Modelling ,UKRI| Understanding and Improving Electrochemical Carbon Dioxide Capture ,EC| NanoMOFdeliAlexander C. Forse; Siân E. Dutton; Aron Walsh; Sylvia Britto; David Fairen-Jimenez; Yuan Chen; Yuan Chen; Chloe J. Balhatchet; Cheng Liu; David G. Madden; Matthias J. Golomb; Jamie W. Gittins;pmid: 34354834
pmc: PMC8315177
Two-dimensional electrically conductive metal-organic frameworks (MOFs) have emerged as promising model electrodes for use in electric double-layer capacitors (EDLCs). However, a number of fundamental questions about the behaviour of this class of materials in EDLCs remain unanswered, including the effect of the identity of the metal node and organic linker molecule on capacitive performance and the limitations of current conductive MOFs in these devices relative to traditional activated carbon electrode materials. Herein, we address both these questions via a detailed study of the capacitive performance of the framework Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with an acetonitrile-based electrolyte, finding a specific capacitance of 110 – 114 F g−1 at current densities of 0.04 – 0.05 A g−1 and a modest rate capability. By, directly comparing its performance with the previously reported analogue, Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), we illustrate that capacitive performance is largely independent of the identity of the metal node and organic linker molecule in these nearly isostructural MOFs. Importantly, this result suggests that EDLC performance in general is uniquely defined by the 3D structure of the electrodes and the electrolyte, a significant finding not demonstrated using traditional electrode materials. Finally, we probe the limitations of Cu3(HHTP)2 in EDLCs, finding a limited cell voltage window of 1.3 V and only a modest capacitance retention of 81 % over 30,000 cycles, both significantly lower than state-of-the-art porous carbons. These important insights will aid the design of future conductive MOFs with greater EDLC performances.
Smithsonian figshare arrow_drop_down Smithsonian figshareReport . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.26434/chemr...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Materials Chemistry AArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv.14345681.v3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareReport . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.26434/chemr...Article . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of Materials Chemistry AArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv.14345681.v3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 11 Jul 2023 United Kingdom, FrancePublisher:American Physical Society (APS) Funded by:UKRI | Theoretical Condensed Mat..., ANR | Matadire, UKRI | Cambridge Theory of Conde...UKRI| Theoretical Condensed Matter Cambridge - Critical Mass Grant ,ANR| Matadire ,UKRI| Cambridge Theory of Condensed Matter Group -Critical Mass GrantKoskelo, Eliseanne; Mukherjee, Paromita; Liu, Cheng; Sackville Hamilton, Alice; Ong, Harapan; Castelnovo, Claudio; Zhitomirsky, M.E.; Dutton, Siân;As materials with suppressed ordering temperatures and enhanced ground state entropies, frustrated magnetic oxides are ideal candidates for cryogenic magnetocaloric refrigeration. While previous materials design has focused on tuning the magnetic moments, their interactions, and density of moments on the lattice, there has been relatively little attention to frustrated lattices. Prior theoretical work has shown that the magnetocaloric cooling rate at the saturation field is proportional to a macroscopic number of soft mode excitations that arise due to the classical ground state degeneracy. The number of these modes is directly determined by the geometry of the frustrating lattice. For corner-sharing geometries, the pyrochlore has 50\% more modes than the garnet and kagome lattices, whereas the edge-sharing \emph{fcc} has only a subextensive number of soft modes. Here, we study the role of soft modes in the magnetocaloric effect of four large-spin Gd$^{3+}$ ($L=0$, $J=S=7/2$) Heisenberg antiferromagnets on a kagome, garnet, pyrochlore, and \emph{fcc} lattice. By comparing measurements of the magnetic entropy change $ΔS_m$ of these materials at fields up to $9$~T with predictions using mean-field theory and Monte Carlo simulations, we are able to understand the relative importance of spin correlations and quantization effects. We observe that tuning the value of the nearest neighbor coupling has a more dominant contribution to the magnetocaloric entropy change in the liquid-He cooling regime ($2$-$20$~K), rather than tuning the number of soft mode excitations. Our results inform future materials design in terms of dimensionality, degree of magnetic frustration, and lattice geometry. 15 pages, 14 figures
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 17 Jun 2021 United KingdomPublisher:Apollo - University of Cambridge Repository Van De Goor, Tim; Liu, Yun; Feldmann, Sascha; Bourelle, Sean; Neumann, Timo; Winkler, Thomas; Kelly, Nicola; Liu, Cheng; Jones, Michael; Emge, Steffen; Friend, Richard; Monserrat, Bartomeu; Deschler, Felix; Dutton, Sian;doi: 10.17863/cam.71386
Research data supporting the publication. Data was collected using X-ray diffraction, heat capacity measurements, density functional theory calculations and photoluminescence spectroscopy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.71386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.71386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Preprint , Journal 2018Embargo end date: 01 Jan 2018 United KingdomPublisher:Royal Society of Chemistry (RSC) Jeongjae Lee; Bartomeu Monserrat; Ieuan D. Seymour; Zigeng Liu; Siân E. Dutton; Clare P. Grey;handle: 2164/22995
We show that vacancy creation and relativistic spin–orbit coupling play a crucial role in promoting fast Mg-ion conduction of Mg3Bi2.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ta11181a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7ta11181a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:The Electrochemical Society Authors: Amigues, AM; Glass, Hugh; Dutton, Sian;doi: 10.1149/2.0231603jes
We thank the Winton Programme for the Physics of Sustainability for funding the project. Thanks are also due to Clare Grey and Giulio Lampronti, for providing technical support and useful discussion. We would finally like to extend our gratitude for the Xpress Access ISIS neutron beamtime on GEM provided by the UK Science and Technology Facilities Council (STFC).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0231603jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0231603jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu