- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Funded by:EC | 5G-SOLUTIONSEC| 5G-SOLUTIONSAuthors: Germanà, Roberto; Liberati, Francesco; De Santis, Emanuele; Giuseppi, Alessandro; +2 AuthorsGermanà, Roberto; Liberati, Francesco; De Santis, Emanuele; Giuseppi, Alessandro; Delli Priscoli, Francesco; Di Giorgio, Alessandro;doi: 10.3390/en14237879
handle: 11573/1587583
This paper presents a novel control system for the participation of plug-in electric vehicles (PEVs) in the provisioning of ancillary services for frequency regulation, in a way that is transparent to the driver and harmonized with the smart charging service requirements. Given a power-frequency droop curve, which specifies how the set of PEVs collectively participate to the provisioning of the frequency regulation service (we call this curve a “global” droop curve), we propose an algorithm to compute “local” droop curves (one for each PEV), which are optimized according to the current status of the PEV and the current progress of the smart recharging session. Once aggregated, the local droop curves match the global one (so that the PEVs contribute as expected to the provisioning of the ancillary service). One innovative aspect of the proposed algorithm is that it is specifically designed to be interoperable with the algorithms that control the PEV recharging process; hence, it is transparent to the PEV drivers. Simulation results are presented to validate the proposed solution.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/7879/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/7879/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Funded by:EC | 5G-SOLUTIONSEC| 5G-SOLUTIONSAlessandro Di Giorgio; Emanuele De Santis; Lucia Frettoni; Stefano Felli; Francesco Liberati;doi: 10.3390/en16031348
handle: 11573/1666890
This paper presents a control strategy aimed at efficiently operating a service area equipped with stations for plug-in electric vehicles’ fast charging, renewable energy sources, and an electric energy storage unit. The control requirements here considered are in line with the perspective of a service area operator, who aims at avoiding peaks in the power flow at the point of connection with the distribution grid, while providing the charging service in the minimum time. Key aspects of the work include the management of uncertainty in the charging power demand and generation, the design of congestion and state-dependent weights for the cost function, and the comparison of control performances in two different hardware configurations of the plant, namely BUS and UPS connection schemes. All of the above leads to the design of a stochastic model predictive controller aimed at tracking an uncertain power reference, under the effect of an uncertain disturbance affecting the output and the state of the plant in the BUS and UPS schemes respectively. Simulation results show the relevance of the proposed control strategy, according to an incremental validation plan focused on the tracking of selected references, the mitigation of congestion, the stability of storage operation over time, and the mitigation of the effect of uncertainty.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1348/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/3/1348/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1348/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/3/1348/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Funded by:EC | 5G-SOLUTIONSEC| 5G-SOLUTIONSAuthors: Germanà, Roberto; Liberati, Francesco; De Santis, Emanuele; Giuseppi, Alessandro; +2 AuthorsGermanà, Roberto; Liberati, Francesco; De Santis, Emanuele; Giuseppi, Alessandro; Delli Priscoli, Francesco; Di Giorgio, Alessandro;doi: 10.3390/en14237879
handle: 11573/1587583
This paper presents a novel control system for the participation of plug-in electric vehicles (PEVs) in the provisioning of ancillary services for frequency regulation, in a way that is transparent to the driver and harmonized with the smart charging service requirements. Given a power-frequency droop curve, which specifies how the set of PEVs collectively participate to the provisioning of the frequency regulation service (we call this curve a “global” droop curve), we propose an algorithm to compute “local” droop curves (one for each PEV), which are optimized according to the current status of the PEV and the current progress of the smart recharging session. Once aggregated, the local droop curves match the global one (so that the PEVs contribute as expected to the provisioning of the ancillary service). One innovative aspect of the proposed algorithm is that it is specifically designed to be interoperable with the algorithms that control the PEV recharging process; hence, it is transparent to the PEV drivers. Simulation results are presented to validate the proposed solution.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/7879/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/7879/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14237879&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:MDPI AG Funded by:EC | 5G-SOLUTIONSEC| 5G-SOLUTIONSAlessandro Di Giorgio; Emanuele De Santis; Lucia Frettoni; Stefano Felli; Francesco Liberati;doi: 10.3390/en16031348
handle: 11573/1666890
This paper presents a control strategy aimed at efficiently operating a service area equipped with stations for plug-in electric vehicles’ fast charging, renewable energy sources, and an electric energy storage unit. The control requirements here considered are in line with the perspective of a service area operator, who aims at avoiding peaks in the power flow at the point of connection with the distribution grid, while providing the charging service in the minimum time. Key aspects of the work include the management of uncertainty in the charging power demand and generation, the design of congestion and state-dependent weights for the cost function, and the comparison of control performances in two different hardware configurations of the plant, namely BUS and UPS connection schemes. All of the above leads to the design of a stochastic model predictive controller aimed at tracking an uncertain power reference, under the effect of an uncertain disturbance affecting the output and the state of the plant in the BUS and UPS schemes respectively. Simulation results show the relevance of the proposed control strategy, according to an incremental validation plan focused on the tracking of selected references, the mitigation of congestion, the stability of storage operation over time, and the mitigation of the effect of uncertainty.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1348/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/3/1348/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1348/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/3/1348/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu